A mathematical modeling of the turbulence combustion biodiesel in a compression ignition engine
More details
Hide details
1
Laboratory of Mechanics, Energiatronic and Sustainable Mobility (MESM), University of Douala, National Polytechnic School of Douala (ENSPD) University of Douala, Cameroon
2
Laboratory of Mechanics, Energiatronic and Sustainable Mobility (MESM),, National Polytechnic School of Douala (ENSPD) University of Douala, Cameroon
Submission date: 2024-09-16
Final revision date: 2024-10-29
Acceptance date: 2024-10-30
Online publication date: 2024-11-07
Corresponding author
Francis BONGNE MOUZONG
Laboratory of Mechanics, Energiatronic and Sustainable Mobility (MESM), University of Douala, National Polytechnic School of Douala (ENSPD) University of Douala, Douala, Cameroon
KEYWORDS
TOPICS
ABSTRACT
The present work proposes a new model for biodiesel combustion in an internal combustion engine. This model first includes the balance equations of gas dynamics with heat release. Secondly, a model with special properties that take into account turbulence effects is incorporated. The chemical models implemented in this study are for a biofuel used at less than 100% and for biodiesel-diesel blends. The resulting model is a coupling of equations describing the combustion of biodiesel with premixing. The model obtained is interesting and applicable to a wide range of combustion problems without major modifications. It is then proposed to the scientific community in order to develop internal combustion engines capable of meeting future political expectations regarding the reduction of pollutant emissions from the combustion of internal combustion engines.
REFERENCES (27)
1.
Abdelrazek MK, Abdelaal MM, El-Nahas AM. Numerical simulation of a diesel engine performance powered by soybean biodiesel and diesel fuels. Beni-Suef Univ J Basic Appl Sci. 2023;12(1):11.
https://doi.org/10.1186/s43088....
2.
Amrani SB. Les expériences des entreprises industrielles algériennes dans l’intégration de la dimension environnementale dans leur stratégie de gestion: Cas des entreprises industrielles de la Wilaya de Bouira. 2013.
https://dspace.univ-ouargla.dz....
3.
Aydın M, Uslu S, Çelik MB. Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: a combined application of ANN and RSM based optimization. Fuel. 2020;269:117472.
https://doi.org/10.1016/j.fuel....
4.
Bahmanisangesari S. Experimental and numerical studies on the performance and emission characteristics of waste cooking oil biodiesel fuel and its blends in a direct injection diesel engine. Doctoral thesis (PhD). Manchester Metropolitan University, 2024.
https://e-space.mmu.ac.uk/6339....
5.
Baqer IA. Intelligent fault detection of spark plugs using vibration signal analysis and artificial neural networks. International Journal of Vehicle Noise and Vibration. 2024;20(1):1-26.
https://doi.org/10.1504/IJVNV.....
6.
Basevich VY, Belyaev AA, Frolov FS, Frolov SM. Turbulent flame propagation in hydrogen-air and methane-air mixtures in the field of synthetic turbulence: direct numerical simulation. Eng. 2023;4(1):748-760.
https://doi.org/10.3390/eng401....
7.
Edam MS, Al-Dawody MF. Numerical simulation for the effect of biodiesel addition on the combustion, performance and emissions parameters of single cylinder diesel engine. Al-Qadisiyah Journal for Engineering Sciences. 2019;12(2):72-78.
https://doi.org/10.30772/qjes.....
8.
Gammaidoni T, Miliozzi A, Zembi J, Battistoni M. Hydrogen mixing and combustion in an SI internal combustion engine: CFD evaluation of premixed and DI strategies. Case Studies in Thermal Engineering. 2024;55:104072.
https://doi.org/10.1016/j.csit....
9.
García-Oliver JM, Novella R, Micó C, Bin-Khalid U, Lopez-Pintor D. A numerical analysis of hydrotreated vegetable oil and dimethoxymethane (OME1) blends combustion and pollutant formation through the development of a reduced reaction mechanism. Int J Engine Res. 2024;25(6):1174-1190.
https://doi.org/10.1177/146808....
10.
Jayabal R. Effect of hydrogen/sapota seed biodiesel as an alternative fuel in a diesel engine using dual-fuel mode. Process Saf Environ. 2024;183:890-900.
https://doi.org/10.1016/j.psep....
11.
Kale AV, Krishnasamy A. Experimental study on combustion, performance, and emission characteristics of a homogeneous charge compression ignition engine fuelled with multiple biofuel-gasoline blends. Energy. 2024;288:129621.
https://doi.org/10.1016/j.ener....
12.
Khoobbakht M, Soleymani M, Kheiralipour K, Karimi M. Predicting performance characteristics of an engine fueled by algal biodiesel-diesel using response surface methodology. Renewable Energy Research and Applications. 2024;5(2):269-279.
https://doi.org/10.22044/rera.....
13.
Kibiwot VN, Nyaanga DM, Njue MR, Owino GO. Modelling of engine performance and emissions fueled by biodiesel blends. Editon Consortium Journal of Engineering and Computer Science. 2024;1(1):1-12.
https://doi.org/10.51317/ecjec....
14.
Kruczyński D, Wcisło G, Leśniak A, Kozak M, Łagowski P. Production and testing of butyl and methyl esters as new generation biodiesels from fatty wastes of the leather industry. Energies. 2022;15(22):8744.
https://doi.org/10.3390/en1522....
15.
Kruczyński D, Wcisło G, Łagowski P, Leśniak A, Kozak M, Pracuch B. Determination of the Effect of the Addition of Second-Generation Biodiesel BBuE to diesel fuel on selected parameters of “B” fuels. Energies. 2023;16(19):6999.
https://doi.org/10.3390/en1619....
16.
Lamano-Ferreira M, Ribeiro AP, Rakauskas F, Bollamann HA, Yume Sawamura Theophilo C, Gonçalves Moreira E, et al. Spatiotemporal monitoring of subtropical urban forests in mitigating air pollution: Policy implications for nature-based solutions. Ecol Indic. 2024;158:111386.
https://doi.org/10.1016/j.ecol....
17.
Li G, Yang R, Zhen H, Wang H, Liu H, Tang Q, et al. Data-driven propagation prediction of subsonic and supersonic turbulent jets by combining self-similarity analysis model and artificial neural network. Applications in Energy and Combustion Science. 2024;17:100236.
https://doi.org/10.1016/j.jaec....
18.
Ma H, Chen HC. Enhancing the two-layer k-epsilon turbulence model through rough wall modification. Phys Fluids. 2024;36(10):105151.
https://doi.org/10.1063/5.0232....
20.
Medjdoub O. Hassab E. Bousba I. Evaluation de différentes pertes des pompes centrifuges sous l’effet du changement de la viscosité des liquides. Université de Jijel. 2022.
http://dspace.univ-jijel.dz:80....
21.
Nouhaila O, Hassane M, Scutaru ML, Jelenschi L. On the accuracy of turbulence model simulations of the exhaust manifold. Appl Sci. 2024;14(12):5262.
https://doi.org/10.3390/app141....
22.
Özyalcin C, Sterlepper S, Roiser S, Eichlseder H, Pischinger S. Exhaust gas aftertreatment to minimize NOx emissions from hydrogen-fueled internal combustion engines. Appl Energ. 2024;353:122045.
https://doi.org/10.1016/j.apen....
23.
Postawa K, Klimek K, Maj G, Kapłan M, Szczygieł J. Advanced dual-artificial neural network system for biomass combustion analysis and emission minimization. Journal of Environmental Management. 2024;349:119543.
https://doi.org/10.1016/j.jenv....
24.
Spalart P. The conjecture of a general law of the wall for classical turbulence models, implying a structural limitation. Flow Turbulence Combust. 2024;112(2):443-457.
https://doi.org/10.1007/s10494....
25.
Tewfik L, Mohamed B, Nasreddine L, Said H, Fatiha N, Abdelwahab B. Valorisation énergétique par extraction d'huiles usagées industrielles et domestiques. Partie I: extraction et caractérisation de biodiesels. 2022.
https://www.researchgate.net/p....