An innovative system for piston engine combustion with laser-induced ignition of the hydrocarbon fuel consisting carbon nanotubes
 
More details
Hide details
1
Faculty of Machines and Transport at Poznan University of Technology.
 
2
Faculty of Technical Physics at Poznan University of Technology
 
 
Publication date: 2017-02-01
 
 
Combustion Engines 2017,168(1), 3-14
 
KEYWORDS
ABSTRACT
The article proposes the concept of a new piston engine combustion system that is designed to meet future-oriented ecological requirements. The concept is to use ethanol as a fuel, in which a slurry of carbon nanotubes would be formed, which are characterized by the ability to ignite using a pulse of laser light fed into the combustion chamber. Modifying the shape of the light beam that penetrates the combustion chamber would allow to control the position and the size of the area in which the ignition of fuel would occur. The originality of the concept is to combine the latest achievements in the field of nanotechnology in the construction of lasers and the production of biofuels, so as to contribute to improving the environmental performance of engines using the existing synergies.The article discusses the prospects for the use of bioethanol as a fuel with zero carbon balance, a critical review of related research on light pulse initiated ignition of hydrocarbon fuels from carbon nanotubes was presented, and a review of studies of laser ignition for conventional fuels. The results of studies of carbon nanotubes suspensions in a variety of fuels conducted by the authors in order to seek solutions for the stable dispersions formation, that are resistant to nanotube agglomeration and sedimentation. The summary indicates directions for further research highlighting the importance of environmental impact.
REFERENCES (72)
1.
AJAYAN, P.M., TERRONES, M., DE LA GUARDIA, A., HUC, V. et al. Nanotubes in a flash ignition and reconstruction. Science. 2002, 296, 705.
 
2.
ALDAJAH, S., HAIK, Y., ELNAJJAR, E. A novel dual effect soot filtering system. Jordan Journal of Mechanical and Industrial Engineering. 2010, 4, 75-78.
 
3.
ALUKER, E.D., KRECHETOV, A.G., MITROFANOV, A.Y., ZVEREV, A.S. et al. Understanding limits of the thermal mechanism of laser initiation of energetic materials. The Journal of Physical Chemistry. 2012, 116, 24482-24486.
 
4.
BADAKHSHAN, A., DANCZYK, S. Ignition of nanoparticles by a compact camera flash. Air Force Research Laboratory Combustion Devices Branch, In-House Interim Report, September 2014.
 
5.
BADAKHSHAN, A., DANCZYK, S. Photo-ignition of carbon nanotube for ignition of liquid fuel spray and solid fuel. TMS Annual Meeting, 11-14.03.2012, Orlando, USA.
 
6.
BALAT, M., BALAT, H. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy. 2009, 86, 2273-2282.
 
7.
BANAPURMATH, N.R., RADHAKRISHNAN, S., TUMBAL, A.V., NARASIMHALU, T.N. et al. Experimental investigation on direct injection diesel engine fuelled with graphene, silver and multiwalled carbon nanotubes-biodiesel blended fuels. International Journal of Automotive Engineering and Technologies. 2014, 3, 129-138.
 
8.
BAUGHMAN, R.H., ZAKHIDOV, A.A., DE HEER, W.A. Carbon nanotubes – the route toward applications. Science. 2002, 297, 787-792.
 
9.
BHUSHAN, B. Springer Handbook of Nanotechnology, third edition, Springer-Verlag, Berlin-Heidelberg 2010.
 
10.
BRAND, L., GIERLINGS, M., HOFFKNECHT, A., WAGNER, V. et al. Kohlestoff-Nanorörchen: Potenziale einer neuen Materialklasse für Deutschland; Technologieanalyse, VDI Technologiezentrum GmbH, Düsseldorf 2009.
 
11.
CARLUCCI, A.P., CICCARELLA, G., STRAFELLA, L. Multiwalled carbon nanotubes (MWCNTs) as ignition agents for air/methane mixtures. IEEE Transactions on Nanotechnology. 2016, 15, 699-704.
 
12.
CARLUCCI, A.P., STRAFELLA, L. Air-methane mixture ignition with multi-walled carbon nanotubes (MWCNTs) and comparison with spark ignition. Energy Procedia. 2015, 82, 915-920.
 
13.
CARLUCCI, A.P., VISCONTI, P., PRIMICERI, P., STRAFELLA, L. et al. Photo-induced ignition of different gaseous fuels using carbon nanotubes mixed with metal nanoparticles as ignitor agents’. Combustion Science and Technology. Accepted for publication, posted online: 08.11.2016.
 
14.
CHAUVEAU, V. Le pouvoir lubrifiant des nanotubes de carbonne; PhD dissertation. L’Ecole Centrale de Lyon, 2010.
 
15.
CHEHROUDI, B. Activation and control of autoignition in HCCI engines using volumetrically-distributed ignition of as-produced single-walled carbon nanotubes. SAE Technical Paper. 2012, 2012-01-1691.
 
16.
CHEHROUDI, B. Minimum ignition energy of the lightactivated ignition of single-walled carbon nanotubes (SWCNTs). Combustion and Flame. 2012, 159, 753-756.
 
17.
CHEHROUDI, B. Nanotechnology and applied combustion: use of nanostructured materials for light-activated distributed ignition of fuels with propulsion applications. Recent Patents on Space Technology. 2011, 1, 107-122.
 
18.
CINKE, M., LI, J., CHEN, B., WIGNARAJAH, K. et al. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems. SAE Technical Paper. 2003, 2003-01-2368.
 
19.
Coordinating Research Council, Fuel Permeation from Automotive Systems: E0, E6, E10, E20 and E85. Final Report, 2006.
 
20.
DE VOLDER, M.F.L., TAWFICK, S.H., BAUGHMAN, R.H., HART, A.J. Carbon nanotubes: present and future commercial applications. Science. 2013, 339, 535-539.
 
21.
DIKIO, E.D. Morphological characterization of soot from the atmospheric combustion of diesel fuel. International Journal of Electrochemical Science. 2011, 6, 2214-2222.
 
22.
DODD, R., MULLETT, J., CARROLL, S., DEARDEN, G. et al. Laser ignition of an IC test engine using an Nd: YAG laser and the effect of key laser parameters on engine combustion performance. Lasers in Engineering. 2007, 17(3), 1554-2971.
 
23.
FINIGAN, D.J., DOHM, B.D., MOCKELMAN, J.A., OEHLSCHLAEGER, M.A. Deflagration-to-detonation transition via the distributed photo ignition of carbon nanotubes suspended in fuel/oxidizer mixtures. Combustion and Flame. 2012, 159, 1314-1320.
 
24.
FRIDELL, E., HAEGER-EUGENSSON, M., MOLDANOVA, J., FORSBERG, B. et al. A modelling study of the impact on air quality and health due to the emissions from E85 and petrol fuelled cars in Sweden. Atmospheric Environment. 2014, 82, 1-8.
 
25.
FU, S., YU, L., HU, Y., WANG, C. et al. Impact of carbon nanotube suspensions on the hotplate ignition of liquid fuels. 2010 International Conference on Mechanic Automation & Control Engineering (MACE), 26-28.06.2010, Wuhan, China.
 
26.
GAN, Y., QIAO, L. Optical properties and radiationenhanced evaporation of nanofluid fuels containing carbonbased nanostructures. Energy Fuels. 2012, 26, 4224-4230.
 
27.
HAREL, S., KHAIRNAR, M., SONAWANE, V. Laser ignition system for IC engines. International Journal of Science and Research. 2014, 3, 1551-1560.
 
28.
HUANG, Y.Y., TERENTJEV, E.M. Dispersion of carbon nanotubes: mixing, sonication, stabilization and composite properties. Polymers. 2012, 4, 275-295.
 
29.
HUANG, Z., KAN, W., LU, Y., CHENG, T. et al. Effect of nanoparticle suspensions on liquid fuel hot-plate ignition. Journal of Nanotechnology in Engineering and Medicine. 2014, 5, 31004-31004-5.
 
30.
KAŁUŻNY, J. Experimental applications of carbon nanotubes in the construction of internal combustion engines. Publishing House of Poznan University of Technology, Poznań 2013.
 
31.
KAŁUŻNY, J., CZAJKA, J., PIELECHA, I., WISŁOCKI, K. Investigations of the fuel injection and atomization with the use of laser illumination. Combustion Engines. 2013, 154, 469-475.
 
32.
KAŁUŻNY, J., MERKISZ-GURANOWSKA, A., GIERSIG, M., KEMPA, K. Lubricating performance of carbon nanotubes in internal combustion engines – engine test results for cnt enriched oil. Internal Report.
 
33.
KAR, K.K., PANDEY, J.K., RANA, S.K. (Eds.) Handbook of Polymer Nanocomposites. Processing, Performance and Application Volume B: Carbon Nanotube Based Polymer Composites. Springer-Verlag Berlin Heidelberg, 2015.
 
34.
KISH, S.S., RASHIDI, A., AGHABOZORG, H.R., MORADI, L. Increasing the octane number of gasoline using functionalized carbon nanotubes. Applied Surface Science. 2010, 256, 3472-3477.
 
35.
KOLOSNJAJ-TAB, J., JUST, J., HARTMAN, K.B., LAOUDI, Y. et al. Anthropogenic carbon nanotubes found in the airways of Parisian children. EBioMedicine. 2015, 2, 1697-1704.
 
36.
LAGALLY, C.D., REYNOLDS, C.C.O., GRIESHOP, A.P., KANDLIKAR, M. et al. Carbon nanotube and fullerene emissions from spark-ignited engines. Aerosol Science and Technology. 2012, 46, 156-164.
 
37.
MANOJ, B., SREELAKSMI, S., MOHAN, A.N., KUNJOMANA, A.G. Characterization of diesel soot from the combustion in engine by x-ray and spectroscopic techniques. International Journal of Electrochemical Science. 2012, 7, 3215-3221.
 
38.
MERKISZ, J., PIELECHA, J. Selected experiences in RDE in Polish reality for different combustion engine applications. 4rd International Conference “Real Driving Emissions”, Berlin 25-27.10.2016.
 
39.
MERKISZ, J., PIELECHA, J. Selected remarks about RDE test. Combustion Engines. 2016, 166(3), 54-61.
 
40.
MERKISZ, J., PIELECHA, J., BIELACZYC, P., WOODBURN, J. Analysis of emission factors in RDE tests as well as in NEDC and WLTC chassis dynamometer tests. SAE Technical Paper. 2016, 2016-01-0980.
 
41.
MIRZAJANZADEH M., TABATABAEI M., ARDJMAND M., RASHIDI A. et al. A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel. 2015, 139, 374-382.
 
42.
MORSY, M.H. Review and recent developments of laser ignition for internal combustion engines applications. Renewable and Sustainable Energy Reviews. 2012, 16(7), 4849-4875.
 
43.
MURR, L.E., BANG, J.J., ESQUIVEL, E.V., GUERRERO, P.A. et al. Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. Journal of Nanoparticle Research. 2004, 6, 241-251.
 
44.
MURR, L.E., GUERRERO, P.A. Carbon nanotubes in wood soot. Atmospheric Science Letters. 2006, 7, 93-95.
 
45.
OHKURA, Y., RAO, P.M., ZHENG, X. Flash ignition of Al nanoparticles: Mechanism and applications. Combustion and Flame. 2011, 158, 2544-2548.
 
46.
PHUOC, T.X. Laser-induced spark ignition fundamental and applications. Optics and Lasers in Engineering. 2006, 44, 351-397.
 
47.
RAMACHANDRAN, S., STIMMING, U. Well to wheel analysis of low carbon alternatives for road traffic. Energy & Environmental Science. 2015, 8, 3313-3324.
 
48.
RASHEDUL, H.K., MASJUKI, H.H., KALAM, M.A., ASHRAFUL, A.M. et al. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine. Energy Conversion and Management. 2014, 88, 348-364.
 
49.
SARVESTANI, N.S., ROHANI, A., FARZAD, A., AGHKHANI, M.H. Modeling of specific fuel consumption and emission parameters of compression ignition engine using nanofluid combustion experimental data. Fuel Processing Technology. 2016, 154, 37-43.
 
50.
SCHWADERLAPP, M., ADOMEIT, P., KOLBECK, A., THEWES, M. Ethanol und sein Potenzial für Downsizing-Motorenkonzepte. MTZ. 2012, 2.
 
51.
SELVAN, V. ANAND, R.B., UDAYAKUMAR, M. Effect of cerium oxide nanoparticles and carbon nanotubes as fuelborne additives in diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel. 2014, 130, 160-167.
 
52.
SINGAMANENI, S., SHEVCHENKO, V., BLIZNYUK, V. Unusual ignition behavior of polyurethane/carbon nanotube composites with a He–Ne laser excitation (632.8 nm) during micro-Raman spectroscopy. Carbon. 2006, 44, 2191-2195.
 
53.
SUAREZ-BERTOA, R., ZARDINI, A., KEUKEN, H., ASTORGA C. Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light Duty Test Cycle (WLTC). Fuel. 2015, 143, 173-182.
 
54.
SUNDSETH, K., LOPEZ-APARICIO, S., SUNDVOR, I. Bioethanol vehicle transport in Oslo as climate policy: what are the social economic costs resulting from acetaldehyde pollution effects? Journal of Cleaner Production. 2015, 108, 1157-1167.
 
55.
SWANSON, J., FEBO, R., BOIES, A., KITTELSON, D. Fuel sulfur and iron additives contribute to the formation of carbon nanotube-like structures in an internal combustion engine. Environmental Science & Technology Letters. 2016, 10, 364-368.
 
56.
SYSOEV, N.N., OSIPOV, A.I., UVAROV, A.V., KOSICHKIN, O.A. Flash ignition of a carbon nanotube. Moscow University Physics Bulletin. 2011, 10, 66(5).
 
57.
TREWARTHA, S. Light ignition of carbon nanotubes for the initiation of energetic materials. PhD Thesis. 2015, Flinders University, School of Chemical and Physical Sciences.
 
58.
TSENG, S.H., TAI, N.H., HSU, W.K., CHEN, L.J. et al. Ignition of carbon nanotubes using a photoflash. Carbon. 2007, 45, 958-964.
 
59.
VDI Richtlinie, VDI 2840, Kohlenstoffschichten Grundlagen, Schichttypen und Eigenschaften.
 
60.
Volkswagen SSP 359; 1.4l TSI Engine with dual-charging.
 
61.
WANG, J., ONASCH, T.B., GE, X., COLLIER, S. et al. Observation of fullerene soot in eastern China. Environmental Science & Technology Letters. 2016, 3, 121-126.
 
62.
WILLAND, J., DANIEL, M., MONTEFRANCESCO, E., GERINGER, B., et al. Grenzen des Downsizing bei Ottomotoren durch Vorentflammungen. MTZ. 2009, 5.
 
63.
WILLAND, J., SCHINTZEL, K., HOFFMEYER, H. Das Potential aufgeladener Ottomotoren mit Direkteinspritzung. MTZ. 2009, 2.
 
64.
Worldwide Fuel Charter, 2013.
 
65.
www.afdc.energy.gov/afdc/data/.
 
66.
Amplitude Laser, www.continuumlasers.com.
 
67.
NanoLab, Inc., www.nano-lab.com.
 
68.
www.nano-lab.com/nanotubesuspensions.html.
 
69.
XIE, H., LEE, H., YOUN, W., CHOI, M. Nanofluid containing multiwalled carbon nanotubes and their enhanced thermal conductivities. Journal of Applied Physics. 2003, 94, 4967-4971.
 
70.
ZACCARDI, J-M., LECOMPTE, M., DUVAL, L., PAGOT, A. Vorentflammung an hoch aufgeladenen Ottomotoren; Visualisierung und Analyse. MTZ. 2009, 12.
 
71.
ZHAO, H. Laser diagnostics and optical measurement techniques in internal combustion engines. SAE International, 2012, Warrendale, USA.
 
72.
ZHAO, H., LADOMMATOS, N. Optical diagnostics for incylinder mixture formation measurements in IC-engines. Progress in Energy and Combustion Science. 1998, 24, 297-336.
 
 
CITATIONS (3):
1.
The Indirect Tribological Role of Carbon Nanotubes Stimulating Zinc Dithiophosphate Anti-Wear Film Formation
Jarosław Kałużny, Andrzej Kulczycki, Wojciech Dzięgielewski, Adam Piasecki, Bartosz Gapiński, Michał Mendak, Tomasz Runka, Damian Łukawski, Oleksandr Stepanenko, Jerzy Merkisz, Krzysztof Kempa
Nanomaterials
 
2.
The impact of injector placement on the dose preparation conditions in a gasoline direct injection system
Maciej SIDOROWICZ, Ireneusz PIELECHA
Combustion Engines
 
3.
Piston assembly in the most powerful 2.0l diesel engine – case study of the current tribological system and innovative concepts for the future
Jarosław KAŁUŻNY, Jerzy MERKISZ, Aleksander STEPANENKO, Emil WRÓBLEWSKI, Bartosz GAPIŃSKI, Adam PIASECKI, Dawid GALLAS
Combustion Engines
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top