Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Poland
Submission date: 2021-03-31
Final revision date: 2021-06-25
Acceptance date: 2021-06-26
Online publication date: 2021-06-29
Publication date: 2021-07-01
Corresponding author
Ksenia Siadkowska
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 38d, 20-618, Lublin, Poland
This paper presents an analysis of selected propulsion units dedicated to test stands for unmanned aircraft systems. It focuses on engines suitable for aircraft with a maximum take-off mass up to 150 kg. The study includes an analysis of propulsion units that can be used to power systems on stationary test stands dedicated to advanced research and measurement of prototype aerospace technologies intended for use in rotorcraft. The analysis of propulsion units shows that electric units are a better choice for powering UAV rotorcraft test stands. Their main advantages include the possibility to simplify the construction of the device by eliminating gears and to mount the motor in a vertical position, simpler power supply, cooling and control systems and the lack of an exhaust system. Additional advantages are undoubtedly lower vibration generation, cheaper and easier operation as well as better comfort.
REFERENCES(27)
1.
AMEDURI, S., CONCILIO, A. Morphing wings review: aims, challenges, and current open issues of a technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020. https://doi.org/10.1177/095440....
BAI, C.-J., WANG, W.-C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renewable and Sustainable Energy Reviews. 2016, 63, 506-519. https://doi.org/https://doi.or....
BARBARINO, S., BILGEN, O., AJAJ, R.M. et al. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures. 2011, 22(9), 823-877. https://doi.org/10.1177/104538....
BERNATT, J., GAWRON, S., KRÓL, E. Nowoczesne silniki z magnesami trwałymi do zastosowań trakcyjnych. TTS Technika Transportu Szynowego. 2010, 16(1-2), 73-76.
COLOMINA, I., MOLINA, P. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing. 2014, 92, 79-97. https://doi.org/10.1016/j.ispr....
GRABOWSKI, Ł., PIETRYKOWSKI, K., KARPIŃSKI, P. Charging process analysis of an opposed-piston two-stroke aircraft Diesel engine. ITM Web of Conferences. 2017, 15, 03002. https://doi.org/10.1051/itmcon....
HASSANALIAN, M., ABDELKEFI, A. Classifications, applications, and design challenges of drones: a review. Progress in Aerospace Sciences. 2017, 91, 91-131. https://doi.org/10.1016/j.paer....
LIU, Y., KREIMEIER, M., STUMPF, E. et al. Overview of recent endeavors on personal aerial vehicles: a focus on the US and Europe led research activities. Progress in Aerospace Sciences. 2017, 91, 53-66. https://doi.org/10.1016/j.paer....
MAYOR, K., TOL, R.S.J. Scenarios of carbon dioxide emissions from aviation. Global Environmental Change. 2010, 20(1), 65-73. https://doi.org/10.1016/j.gloe....
SARAF, A.K., SINGH, M.P., CHOUHAN, T.S. Aerody-namic analysis of NACA0012 airfoil using CFD. Interna-tional Journal of Mechanical and Production Engineering. 2017, 5(12), 21-25.
SEHRA, A.K., WHITLOW, W. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences. 2004, 40(4-5), 199-235. https://doi.org/10.1016/j.paer....
SIADKOWSKA, K., WENDEKER, M., MAJCZAK, A. et al. The influence of some synthetic fuels on the performance and emissions in a Wankel engine. SAE Technical Papers 2014-01-2611. 2014. https://doi.org/10.4271/2014-0....
SIADKOWSKA, K. Wind tunnel research on the unmanned aerial vehicle rotor blade setting angle. Advances in Science and Technology Research Journal. 2020, 14(4), 104-114. https://doi.org/10.12913/22998....
SIADKOWSKA, K., MAJCZAK, A., BARAŃSKI, G. Studying a construction of pistons for the aircraft CI engine. Combustion Engines. 2017, 168(1), 161-167. https://doi.org/10.19206/CE-20....
SOCHACZEWSKI, R., SZLACHETKA, M. Numerical analysis of a fuel pump for an aircraft Diesel engine. MATEC Web of Conferences. 2019, 252, 01003. https://doi.org/10.1051/matecc....
SUAS NEWS – BUSINESS OF DRONES. Northwest UAV, Hirth Engines sign distribution agreement for North and Central America. 2021. https://www.suasnews.com/2020/....
SUROWSKA, B. Functional and hybrid materials in air transport. Eksploatacja i Niezawodność – Maintenance and Reliability 2008, 3, 30-40. http://www.ein.org.pl/sites/de....
An assessment of the transient effect on helicopter main rotor stability and power demand Radosław Raczyński, Ksenia Siadkowska, Karol Ścisłowski, Mirosław Wendeker Combustion Engines
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.