The process of the atomization and formation of the fuel spray can be described by macro- and microstructure parameters. Knowledge of these parameters may be a key information to conduct further optimization of the combustion process. This paper presents the research results of the microstructure parameters of the diesel oil spray atomized with marine engine injector. A measurement technique, named Laser Induced Fluorescence (LIF) in the combination with Mie scattering was used to determine LIF/Mie ratio across the spray. The fuel was injected into a constant volume vessel. LIF and Mie signals were recorded by two cameras at the same time. Nd:YAG pulsed laser was used to create light sheet for spray illumination. Wavelength of λ = 266 nm was used in this study.
REFERENCES(30)
1.
SARVI, A., FOGELHOLM, C.J., ZEVENHOVEN, R. Emissions from large-scale medium-speed diesel engines: 1. Influence of engine operation mode and turbocharger. Fuel Process Technol. 2008, 89, 510-519.
SARVI, A., FOGELHOLM, C.J., ZEVENHOVEN, R. Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode. Fuel Process Technol. 2008, 89, 520-527.
SARVI, A., KILPINEN, P., ZEVENHOVEN, R. Emissions from large-scale medium-speed diesel engines: 3. Influence of direct water injection and common rail. Fuel Process Technol. 2009, 90, 222-231.
PAYRI, R., GARCÍA-OLIVER, J.M., XUAN, T., BARDI, M. A study on diesel spray tip penetration and radial expansion under reacting conditions. Appl Therm Eng. 2015, 90, 619-629.
JU, D., JIA, X., HUANG, Z. et al. Comparison of atomization characteristics of model exhaust gas dissolved diesel and gasoline. Fuel. 2016, 182, 928-934.
WANG, Z., JIANG, C., XU, H., WYSZYNSKI, M.L. Macroscopic and microscopic characterization of diesel spray under room temperature and low temperature with split injection. Fuel Process Technol. 2016, 142, 71-85.
PARK, S., WOO, S., KIM, H., LEE, K. The characteristic of spray using diesel water emulsified fuel in a diesel engine. Appl Energy. 2016, 176, 209-220.
LI, D., GAO, Y., LIU, S. et al. Effect of polyoxymethylene dimethyl ethers addition on spray and atomization characteristics using a common rail diesel injection system. Fuel. 2016, 186, 235-247.
YU, W., YANG, W., TAY, K. et al. Macroscopic spray characteristics of kerosene and diesel based on two different piezoelectric and solenoid injectors. Exp Therm Fluid Sci. 2016, 76, 12-23.
SUH, H.K., PARK, S.W., LEE, C.S. Effect of piezo-driven injection system on the macroscopic and microscopic atomization characteristics of diesel fuel spray. Fuel. 2007, 86, 2833-2845.
PAYRI, R., VIERA, J.P., GOPALAKRISHNAN, V., SZYMKOWICZ, P.G. The effect of nozzle geometry over the evaporative spray formation for three different fuels. Fuel. 2017, 188, 645-660.
PAYRI, R., SALVADOR, F.J., GIMENO, J., DE LA MORENA, J. Effects of nozzle geometry on direct injection diesel engine combustion process. Appl Therm Eng. 2009, 29, 2051-2060.
BADOCK, C., WIRTH, R., FATH, A., LEIPERTZ, A. Investigation of cavitation in real size diesel injection nozzles. Int J Heat Fluid Flow. 1999, 20, 538-544.
DESANTES, J.M., PAYRI, R., SALVADOR, F.J., DE LA MORENA, J. Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel. 2010, 89, 3033-3041.
SUH, H.K., LEE, C.S. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics. Int J Heat Fluid Flow. 2008, 29, 1001-1009.
LINNE, M.A., PACIARONI, M., BERROCAL, E., SEDARSKY, D. Ballistic imaging of liquid breakup processes in dense sprays. Proc Combust Inst. 2009, 32 II, 2147-2161.
PASTOR, J.V., PAYRI, R., SALAVERT, J.M., MANIN, J. Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray. Int J Automot Technol. 2012, 13, 713-724.
KAPUSTA, Ł.J., JAWORSKI, P., TEODORCZYK, A., KOWALSKI, J. Laser based diagnostic system for spray measurements. J KONES Powertrain Transp. 2015, 22, 91-98.
BERROCAL, E., KRISTENSSON, E., HOTTENBACH, P. et al. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging. Appl Phys B. 2012, 109, 683-694.
The Coefficient of Reactivity and Activation Energy as the Criteria of Assessment of the Influence of Sustainable Aviation Fuels on Combustion Process in a Rapid Compression Combustion Machine and a Turbine Engine Andrzej Kulczycki, Tomasz Białecki, Anna Łęgowik, Jerzy Merkisz, Ireneusz Pielecha Energies
Evaluation of the possibilities of adapting a constant volume combustion chamber for research on ignition of hypergolic propellants under low and high-pressure conditions Maciej KRZESICKI, Łukasz BORUC, Łukasz Jan KAPUSTA Combustion Engines
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.