Analysis of thermal parameters of heat storages for use in vehicles with combustion engines
 
More details
Hide details
1
Research and Development Centre for Mechanical Appliances OBRUM Ltd., Gliwice. Institute of Thermal Technology, Silesian University of Technology.
 
2
Institute of Thermal Technology, Silesian University of Technology.
 
 
Publication date: 2019-10-01
 
 
Combustion Engines 2019,179(4), 119-125
 
KEYWORDS
ABSTRACT
The propulsion system of a vehicle using an internal combustion engine generates a significant amount of waste heat during operation, which is almost entirely discharged into the environment without any useful effect. One of the ways of using waste heat is storing it, and then using, for example, when starting the engine in winter conditions. The application of the indicated solution, in particular for the combat vehicle will allow to reduce the effects of cold start and will shorten the time of preparing such a vehicle for combat operations. The article presents: types of heat accumulators that could be used in a military vehicle, the results of preliminary tests carried out on the test stand and the impact of an additional heat source on the time of heating the internal combustion engine and on emission of exhaust gas components.
REFERENCES (12)
1.
BRZEŻAŃSKI, M., MĘŻYK, P. Starters of combustion engines in military vehicles. Combustion Engines. 2015, 162(3).
 
2.
BRZEŻAŃSKI, M., MĘŻYK, P. Heat balance of the military vehicle. Combustion Engines. 2017, 170(3). DOI: 10.19206/CE-2017-322.
 
3.
DINKER, A., AGARWAL, M., AGARWAL, G.D. Heat storage materials, geometry and applications: a review. Journal of the Energy Institute. 2017, 90, 1-11.
 
4.
ALVA, G., LIN, Y., FANG, G. An overview of thermal energy storage systems. Energy. 2018, 144, 341-378.
 
5.
PARK, S., WOO, S., SHON, J., LEE, K. Experimental study on heat storage system using phase-change material in a diesel engine. Energy. 2017, 119, 1108-1118.
 
6.
BARI, S., HOSSAIN, S.N. Waste heat recovery from a diesel engine using shell and tube heat exchanger. Applied Thermal Engineering. 2013, 61, 355-363.
 
7.
 
8.
ENGLMAIR, G., MOSER, Ch., FURBO, S. et al. Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system. Applied Energy. 2018, 221, 522-534.
 
9.
Safety data sheet of sodium acetate trihydrate E-262(i)/Karta charakterystyki substancji octan sodu trójwodny E-262(i), SA Chemicals, date of prep. 04.11.2014, date of update 04.06.2015.
 
10.
PRZYBYŁA, G. Studium stosowania biopaliw gazowych do zasilania silników spalinowych. Wydawnictwo Politechniki Śląskiej. Gliwice 2015.
 
11.
PRZYBYŁA, G. Wpływ parametrów obciążenia silnika spalinowego na przebieg generacji ciepła oraz efektywność konwersji energii w układzie. Rozprawa doktorska. Gliwice 2007.
 
12.
Raport z badań klimatycznych prototypu mostowego pojazdu transportowego […] w warunkach obniżonych temperatur do –30°C ±2,5°C oraz podwyższonych temperatur do +55°C ±2,5°C. Kraków 2008. Unpublished document.
 
 
CITATIONS (1):
1.
A comprehensive review of Trinitor components: A sustainable waste heat recovery polygenerative system for diesel vehicles
Balamurali Duraivel, Saboor Shaik, Ritik Bansal, Shubhankar Debabrata Khanda, Dhruv Patel, M. Natarajan, C. Ahamed Saleel, R. D. Jilte, Ümit Ağbulut
Journal of Thermal Analysis and Calorimetry
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top