Characteristics of pollutants emitted by motor vehicles and their impact on the environment and engine operation
More details
Hide details
1
Military University of Technology, Faculty of Mechanical Engineering, Military University of Technology, Poland
2
Transport, Motor Transport Institute, Poland
These authors had equal contribution to this work
Submission date: 2024-09-12
Final revision date: 2024-10-11
Acceptance date: 2024-10-14
Online publication date: 2024-11-07
Corresponding author
Tadeusz Dziubak
Military University of Technology, Faculty of Mechanical Engineering, Military University of Technology, Poland
KEYWORDS
TOPICS
ABSTRACT
Gaseous and solid pollutants (dusts) of atmospheric air have been defined. Dusts have been divided according to various criteria and their properties have been given. The sources and characteristics of anthropogenic and natural pollutants of atmospheric air have been presented. It has been shown that the main sources of anthropogenic pollutants, apart from industry, are motorization, and internal combustion engines of cars are a source of gaseous pollutants and solid particles, the emission of which has been significantly reduced. The originality of the article consists in conducting an extensive literature analysis and proving that the emission of "non-engine" pollutants in the form of dust from the wear of friction linings of brakes, clutches and from the wear of tires and roads, as well as mineral dust raised from the ground, is currently a greater threat to human health and the environment than engine emissions. The impact of particulate matter emissions from road transport and mineral dust, which is the basic component of road dust, on human health, vegetation and on the operation of engine and vehicle systems is presented.
REFERENCES (106)
1.
Aatmeeyata DS, Kaul D, Sharma M. Traffic generated non-exhaust particulate emissions from concrete pavement: a mass and particle size study for two-wheelers and small cars. Atmos Environ. 2009;43:5691-5697.
https://doi.org/10.1016/j.atmo....
3.
Al-faifi T, El-Shabasy A. Effect of heavy metals in the cement dust pollution on morphological and anatomical characteristics of Cenchrus ciliaris L. Saudi Journal of Biological Sciences. 2020;28(1):1069-1079.
https://doi.org/10.1016/j.sjbs....
4.
Andrych-Zalewska M, Chłopek Z, Merkisz J, Pielecha J. Determination of characteristics of pollutant emission from a vehicle engine under traffic conditions in the engine. Combustion Engines. 2022;191(4):58-65.
https://doi.org/10.19206/CE-14....
5.
Andrych-Zalewska M, Chłopek Z, Merkisz J, Pielecha J. Exhaust emission from a vehicle engine operating in dynamic states and conditions corresponding to real driving. Combustion Engines. 2019;178(3):99-105.
https://doi.org/10.19206/CE-20....
6.
Baczewski K, Hebda M. Filtracja płynów eksploatacyjnych. MCNEMT, Radom 1991/1992 (in Polish).
7.
Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G. Tyra and road wear particles (TRWP)-A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ. 2020;733.
https://doi.org/10.1016/j.scit....
8.
Bojdo N, Filippone A. Effect of desert particulate composition on helicopter engine degradation rate, 40th European Rotorcraft Forum, Southampton. September 2014.
https://www.researchgate.net/p....
9.
Cao J, Haibo H, Jiao R, Pei J, Xu Y, Ren R et al. The study of wear particle emissions of soft rubber on rolling contact under braking conditions. Wear. 2022;506-507:204431.
https://doi.org/10.1016/j.wear....
10.
Castoldi L. An overview on the catalytic materials proposed for the simultaneous removal of NOx and soot. Materials. 2020;13:3551.
https://doi.org/10.3390/ma1316....
12.
Chłopek Z, Strzałkowska K. Research on the impact of automotive sources on the immission of specific size fractions of particulate matter in a street canyon. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2018;80(2):19-35.
https://doi.org/10.14669/AM.VO....
13.
Chłopek Z, Żegota A. The emission of particulate matter PM10 from vehicles. Eksploat Niezawodn. 2004;21(1):3-13.
14.
Chłopek Z, Suchocka K. Risk posed by particulate master to the human and environment near transport router. The Archives of Automotive Engineering – Archiwum Motoryzacji 2014:63(1):3-22.
15.
Chłopek Z, Suchocka K. Analiza przepisów ochrony środowiska przed emisją cząstek stałych w aspekcie ruchu samochodowego. Zeszyty Naukowe Instytutu Pojazdów Politechniki Warszawskiej. 2014;1(97):21-32.
16.
Chmiel MJ, Frączek K, Grzyb J. Problemy monitoringu zanieczyszczeń mikrobiologicznych powietrza. Woda-Środowisko-Obszary Wiejskie. 2015;15(1):17-27. www.itp.edu.pl/wydawnictwo/woda.
17.
Cunha-Lopes I, Alves CA, Casotti Rienda I, Faria T, Lucarelli F, Querol X et al. Characterisation of non-exhaust emissions from road traffic in Lisbon. Atmos Environ. 2022;286:119221.
https://doi.org/10.1016/j.atmo....
18.
Deng Y, Wang X, Chen G, Wu H, Han Z, Li R. Experimental study on a diesel particulate filter with reciprocating flow. ACS Omega. 2019;4:17098-17108.
https://doi.org/10.1021/acsome....
19.
Dzierżanowski P, Kordziński W, Otyś J, Szczeciński S, Wiatrek R. Napędy Lotnicze. Turbinowe silniki śmigłowe i śmigłowcowe; WKŁ, Warszawa 1985 (in Polish).
21.
Dziubak T. Lecture „Eksploatacja pojazdów wojskowych”. Wojskowa Akademia Techniczna (in Polish), Warszawa 2023.
22.
Dziubak T. Techniczna eksploatacja układu zasilania powietrzem silników spalinowych pojazdów mechanicznych. WAT. Warszawa 2015.
23.
Dziubak T, Karczewski M. Operational malfunctions of turbochargers – reasons and consequences. Combustion Engines. 2016;164(1):13-21.
https://doi.org/10.19206/CE-11....
24.
Dziubak T. Właściwości eksploatacyjne przepływomierzy powietrza wlotowego silników spalinowych pojazdów mechanicznych (in Polish). Logistyka. 2015;3:1217-1226.
25.
Endo Y, Chen DR, Pui DYH. Bimodal aerosol loading and dust cake formation on air filters. Filtr Separat. 1998;35(2):191-184.
27.
Faino M. 48th PMP IWG meeting Tyre and Road Wear Particles: The Tyre Industry Perspective UN WP29 GRPE PMP-48-13. 2018.
28.
Feng XL, Shao LY, Xi CX, Jones TP, Zhang DZ, BéruBé KA. Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere. 2020;256:127058.
https://doi.org/10.1016/j.chem....
29.
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W et al. A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ Sci Technol. 2022;56:6813-6835.
https://doi.org/10.1021/acs.es....
30.
Ghouri I, Barker R, Brooks P, Kosarieh S, Barton D. The effects of corrosion on particle emissions from a grey cast iron brake disc. SAE Technical Paper 2022-01-1178. 2022.
https://doi.org/10.4271/2022-0....
31.
Giechaskiel B, Grigoratos T, Dilara P, Karageorgiou T, Ntziachristos L, Samaras Z. Light-duty vehicle brake emission factors. Atmosphere. 2024;15(1):97.
https://doi.org/10.3390/atmos1....
33.
Glišović J, Pešić R, Lukić J, Miloradović D. Airborne wear particles from automotive brake system: environmental and health issues. 1st International Conference on Quality of Life. June 2016:289-295.
34.
Gollakota ARK, Gautam S, Santosh M, Sudan HS, Rajiv Gandhi R, Jebadurai VS et al. Bioaerosols: characterization, pathways, sampling strategies, and challenges to geo-environment and health. Gondwana Res. 2021;99:178-203.
https://doi.org/10.1016/j.gr.2....
35.
Grigoratos T, Mathissen M, Vedula R, Mamakos A, Agudelo C, Gramstat S et la. Interlaboratory Study on Brake Particle Emissions-Part I: particulate matter mass emissions. Atmosphere. 2023;14:498.
https://doi.org/10.3390/atmos1....
36.
Gupta N, Singh SK, Pandey SM. Tribological characterization of thermal sprayed CrC alloyed coating – a review. Adv Mater Res. 2020;7(4):660-683..
https://doi.org/10.1080/237406....
37.
Hagino H, Iwata A, Okuda T. Iron Oxide and Hydroxide Speciation in Emissions of Brake Wear Particles from Different Friction Materials Using an X-ray absorption fine structure. Atmosphere. 2024;15:49.
https://doi.org/10.3390/atmos1....
38.
Harrison RM, Jones AM, Gietl J, Yin J, Green DC. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ Sci Technol. 2012;46:6523-6529.
https://doi.org/10.1021/es3008....
39.
He C, Jiang W. Research on particle size distribution and composition of road deposit dust in Xi'an: from the perspective of non-exhaust emissions. J Clean Prod. 2024;470:143269.
https://doi.org/10.1016/j.jcle....
40.
Hesse D, Feißel T, Kunze M, Bachmann E, Bachmann T, Gramstat S. Comparison of methods for sampling particulate emissions from tires under different test environments. Atmosphere. 2022;13(8):1262.
https://doi.org/10.3390/atmos1....
41.
Hjelm R, Wahlström J, Yenibayrak I, Sabani D, Runsten P, Lyu Y. Airborne wear particles from dry clutches. Atmosphere. 2022;13(10):1700.
https://doi.org/10.3390/atmos1....
43.
Hüffer T, Wagner S, Reemtsma T, Hofmann T. Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC, Trends Anal Chem. 2019;113:392-401.
https://doi.org/10.1016/j.trac....
44.
Jarlskog I, Jaramillo-Vogel D, Rausch J, Gustafsson M, Stromvall AM, Andersson-Skold Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environ Int. 2022;170:107618.
https://doi.org/10.1016/j.envi....
45.
Jaroszczyk T. Air filtration in heavy-duty motor vehicle applications. Proc. Dust Symposium III Vicksburg MS, 15-17 September 1987.
46.
Jekel M. Scientific report on tyre and road wear particles, TRWP, in the aquatic environment; ETMRA: Brussels, Belgium 2019. FINAL-Scientific-Report-on-Tyre-and-Road-Wear-Particles.pdf.
47.
Juda-Rezler K, Toczko B. Pyły drobne w atmosferze. Kompendium wiedzy o zanieczyszczeniu powietrza pyłem zawieszonym w Polsce (in Poland). Biblioteka Monitoringu Środowiska. Warszawa 2016.
49.
Khardi S. Emission factors of tyre wear particles emitted by light road vehicles in real driving conditions: a new challenge for clean road transport to improve urban air quality. Atmosphere. 2024;15(6):665.
https://doi.org/10.3390/atmos1....
50.
Koszałka G, Suchecki A. Changes in performance and wear of small diesel engine during durability test. Combustion Engines. 2015;162(3):34-40.
https://doi.org/10.19206/CE-11....
51.
Kovochich M, Parker JA, Oh SO, Lee JP, Wagner S, Reemtsma T et al. Characterization of individual tire and road wear particles in environmental road dust, tunnel dust, and sediment. Environ Sci Technol Lett. 2021;8:1057-1064.
https://doi.org/10.1021/acs.es....
52.
Kreider ML, Unice KU, Panko JM. Human health risk assessment of tire and road wear particles (TRWP) in air. Hum Ecol Risk Assess Int J. 2020;26:2567-2585.
https://doi.org/10.1080/108070....
53.
Kreider ML, Panko JM, McAtee BL, Sweet LI, Finley BL. Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies. Sci Total Environ. 2010;408:652-659.
https://doi.org/10.1016/j.scit....
54.
Kukutschová J, Moravec P, Tomášek V, Matějka V, Smolík J, Schwarz J et al. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ Pollut. 2011;159:998-1006.
https://doi.org/10.1016/j.envp....
55.
Lähde T, Giechaskiel B, Pavlovic J, Suarez-Bertoa R, Valverde V, Clairotte M et al. Solid particle number emissions of 56 light-duty Euro 5 and Euro 6 vehicles. J Aerosol Sci. 2022;159:105873.
https://doi.org/10.1016/j.jaer....
56.
Lee JK, Kim SCh, Liu BYH. Effect of bi-modal aerosol mass loading on the pressure drop for gas cleaning industrial filters. Aerosol Sci Tech. 2001;35(4):805-814.
https://doi.org/10.1080/027868....
57.
Li X, Talbot J, King J, Meng Wang M. Effects of road dust on vegetation composition and surface chemistry of three ombrotrophic peatlands in eastern Canada. Geoderma. 2023;439:116665.
https://doi.org/10.1016/j.geod....
58.
Lorenčič V. The effect of tire age and anti-lock braking system on the coefficient of friction and braking distance. Sustainability. 2023;15(8):6945.
https://doi.org/10.3390/su1508....
59.
Lou D, Song G, Xu, K, Zhang Y, Zhu K. The oxidation performance of a carbon soot catalyst based on the Pt-Pd synergy effect. Energies. 2024;17:1737.
https://doi.org/10.3390/en1707....
60.
Lou D, Kang L, Zhang Y, Fang L, Luo C. Effect of exhaust gas recirculation combined with selective catalytic reduction on NOx emission characteristics and their matching optimization of a heavy-duty diesel engine. ACS Omega. 2022;7:22291-22302.
https://doi.org/10.1021/acsome....
61.
Lwin KS, Tobias A, Chua PL, Yuan L, Thawonmas R, Ith, S et al. Effects of desert dust and sandstorms on human health: A scoping review. GeoHealth. 2023;7:e2022GH000728.
https://doi.org/10.1029/2022GH....
63.
Mantecca P, Farina F, Moschini E, Gallinotti D, Gualtieri M, Rohr A et al. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol Lett. 2010;198:244-254.
https://doi.org/10.1016/j.toxl....
64.
Mathissen M, Grigoratos T, Lahde T, Vogt R. Brake wear particle emissions of a passenger car measured on a chassis dynamometer. Atmosphere. 2019;10(9):556.
https://doi.org/10.3390/atmos1....
65.
Mayer PM, Kelly D, Moran KD, Miller EL. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. Sci Total Environ. 2024;927:171153.
https://doi.org/10.1016/j.scit....
66.
Merkisz J. Ekologiczne problem silników spalinowych. t. 1 (in Polish). Wydawnictwo Politechniki Poznańskiej. Poznan 1998.
68.
Paluchamy B, Mishra DM, Panigrahi DC. Airborne respirable dust in fully mechanised underground metalliferous mines e Generation, health impacts and control measures for cleaner production. J Clean Prod. 2021;296:126524.
https://doi.org/10.1016/j.jcle....
69.
Philippe F, Morgeneyer M, Xiang M, Manokaran M, Berthelot B, Chen Y et al. Representativeness of airborne brake wear emission for the automotive industry: a review. P I Mech D-J Aut. 2021;235:2651-2666.
https://doi.org/10.1177/095440....
70.
Piscitello A, Bianco C, Casasso A, Sethi R. Non-exhaust traffic emissions: sources, characterization, and mitigation measures. Sci Total Environ. 2021;766:144440.
https://doi.org/10.1016/j.scit....
71.
Poma A, Vecchiotti G, Colafarina S, Zarivi O, Arrizza L, Di Carlo P et al. Particle debris generated from passenger and truck tires induces different genotoxicity and inflammatory responses in the RAW 264.7 cell line. Nanomaterials. 2023;13:756.
https://doi.org/10.3390/nano13....
72.
Poma A, Aloisi M, Bonfigli A, Colafarina S, Zarivi O, Aimola P et al. Particle debris generated from passenger tires induces morphological and gene expression alterations in the macrophages cell line RAW 264.7. Nanomaterials. 2023;13(4):756.
https://doi.org/10.3390/nano13....
73.
Prajapati SK, Tripathi BD. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J Environ Qual. 2008;37(3):865.
https://doi.org/10.2134/jeq200....
74.
Rachwał M, Wawer M, Jabłońska M, Rogula Kozłowska W, Rogula-Kopiec P. Geochemical and mineralogical characteristics of airborne particulate matter in relation to human health risk. Minerals. 2020;10:866.
https://doi.org/10.3390/min101....
75.
Rauert C, Rodland ES, Okoffo ED, Reid MJ, Meland S, Thomas KV. Challenges with quantifying tire road wear particles: recognizing the need for further refinement of the ISO technical specification. Environ Sci Technol Lett. 2021;8:231-236.
https://doi.org/10.1021/acs.es....
76.
Rausch J, Jaramillo-Vogel D, Perseguers S, Schnidrig N, Grobety B, Yajan P. Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Sci Total Environ. 2022;803:149832.
https://doi.org/10.1016/j.scit....
77.
Rivera BH, Rodriguez MG. Characterization of airborne particles collected from car engine air filters using SEM and EDX techniques. Int J Environ Res Public Health. 2016;13:985.
https://doi.org/10.3390/ijerph....
78.
Robles-Lorite L, Dorado-Vicente R, Torres-Jiménez E. Bombek, G, Lešnik, L. Recent advances in the development of automotive catalytic converters: a systematic review. Energies. 2023;16:6425.
https://doi.org/10.3390/ en16186425.
79.
Rokosz U. Układy oczyszczania spalin i pokładowe systemy diagnostyczne samochodów (in Polish). WKŁ. Warszawa 2007.
80.
Sadiq AA, Khardi S, Lazar AN, Bello IW, Salam SP., Faruk A et al. A characterization and cell toxicity assessment of particulate pollutants from road traffic sites in Kano State, Nigeria. Atmosphere. 2022;13:655.
https://doi.org/10.3390/atmos1....
81.
Sawczuk W, Merkisz-Guranowska A, Rilo Cañás A-M, Kołodziejski S. New approach to brake pad wear modelling based on test stand friction-mechanical investigations. Eksploat Niezawodn. 2022;24(3):419-426.
https://doi.org/10.17531/ein.2....
83.
Schlafle S, Zhang M, Unrau H-J, Gauterin F. Influence of vertical load, inflation pressure, and driving speed on the emission of tire–road particulate matter and its size distribution. Atmosphere. 2024;15:502.
https://doi.org/10.3390/atmos1....
84.
Sharma N, Agarwal AK. Effect of the fuel injection pressure on particulate emissions from a gasohol (E15 and M15)-fueled gasoline direct injection engine. Energy Fuels. 2017:31:4155-4164.
https://doi.org/10.1021/acs.en....
85.
Singh V, Biswal A, Kesarkar AP, Mor S, Ravindra K. High resolution vehicular PM10 emissions over megacity Delhi: relative contributions of exhaust and non-exhaust sources. Sci Total Environ. 2019;699:134273.
https://doi.org/10.1016/j.scit....
86.
Smialek JL, Archer FA, Garlick RG. Turbine airfoil degradation in the Persian Gulf War. The Journal of The Minerals. Metals & Materials Society (TMS). 1994;46(12):39-41.
87.
Sommer F, Dietze V, Baum A, Sauer J, Gilge S, Maschowski C et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual Res. 2018;18:2014-2028.
https://doi.org/10.4209/aaqr.2....
89.
Świderski A, Borucka A, Jacyna-Gołda I, Szczepański E. Wear of brake system components in various operating conditions of vehicle in the transport company. Eksploat Niezawodn. 2019;21(1):1-9.
https://doi.org/10.17531/ein.2....
90.
Szczepankowski A, Szymczak J, Przysowa R. The effect of a dusty environment upon performance and operating parameters of aircraft gas turbine engines. Proceedings of the Specialists’ Meeting-Impact of Volcanic Ash Clouds on Military Operations NATO AVT-272-RSM-047, Vilnius, May 2017.
https://doi.org/10.14339/STO-M....
91.
Tanaka TY, Chiba M. A numerical study of the contributions of dust source regions to the global dust budget. Global Planet Change. 2006;52:88-104.
https://doi.org/10.1016/j.glop....
93.
Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ. 2008.400(1-3):270-282.
https://doi.org/10.1016/j.scit....
94.
Vasiljević S, Glišović J, Lukić J, Miloradović D, Stanojević M, Dordević M. analysis of parameters influencing the formation of particles during the braking process: experimental approach. Atmosphere. 2023;14(11):1618.
https://doi.org/10.3390/atmos1....
95.
von Uexküll O, Skerfving S, Doyle R, Braungart M. Antimony in brake pads-a carcinogenic component? J Clean Prod. 2005;13(1):19-31.
https://doi.org/10.1016/j.jcle....
96.
Wagner S, Funk CW, Müller K, Raithel DJ. The chemical composition and sources of road dust, and of tire and road wear particles – a review. Sci Total Environ. 2024;926:171694.
https://doi.org/10.1016/j.scit....
97.
Wagner S, Klöckner, P, Reemtsma T. Aging of tire and road wear particles in terrestrial and freshwater environments – a review on processes, testing, analysis and impact. Chemosphere. 2022;288:132467.
https://doi.org/10.1016/j.chem....
98.
Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic environment – a review on generation, analysis, occurrence, fate and effects. Water Res. 2018;139:83-100.
https://doi.org/10.1016/j.watr....
100.
Woronko B, Żurawek R. Mikromorfologia powierzchni ziaren eolicznego pyłu kwarcowego z pokryw stokowych Ślęży (Przedgórze Sudeckie) (in Polish). Przegląd Geologiczny. 2004;52(4):321-324.
101.
Zeeshan N, Freer-Smith P, Murtaza G, Wong AE, Taylor G. His dark materials: quantifying the problem of dust (particulate matter) in the agricultural landscape of California. Atmos Environ. 2024;330:120562.
https://doi.org/10.1016/j.atmo....
102.
Zhang S, Nie X, Bi Y, Yan J, Liu S, Peng Y. Experimental study on NOx reduction of diesel engine by EGR coupled with SCR. ACS Omega. 2024;9:8308-8319.
https://doi.org/10.1021/acsome....
104.
Zhang J, Peng J, Song C, Ma C, Men Z, Wu J et al. Vehicular non-exhaust particulate emissions in Chinese megacities: source profiles, real-world emission factors, and inventories. Environ Pollut. 2020;266:115268.
https://doi.org/10.1016/j.envp....
105.
Zhao J, Peng P, Song J, Ma S, Sheng G, Fu J. Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China. Air Qual Atmos Hlth. 2010;3:139-147.
https://doi.org/10.1007/s11869....
106.
Zhong C, Sun J, Zhang J, Liu Z, Fang T, Liang X et al. Characteristics of vehicle tire and road wear particles’ size distribution and influencing factors examined via laboratory test. Atmosphere. 2024;15(4):423.
https://doi.org/10.3390/atmos1....