KEYWORDS
TOPICS
ABSTRACT
Article points out methods currently used to diagnose marine engines in operation. The development of tools and programs for implementing these methods was pointed out. The problem of unsatisfactory measurement susceptibility of marine engines was highlighted. Three methods of parametric diagnosis are presented: measurement of in-cylinder parameters and in exhaust gas duct, numerical simulation due to computer software and calculations based on Wibe function. Unfitness states that were analyzed during tests are presented: reduced injection pressure, obstructed intake air duct and reduced compression ratio. The specific enthalpy of the exhaust gas within one engine cycle was determined as a new diagnostic parameter. As a supplement, thermograms of the engine in various states of inoperability were presented. The obtained results were compared and a series of conclusions derived from them were presented. It was evaluated that numerical simulation is an excellent tool for planning experimental studies. Tests on the engine in operation were found to be the most diagnostically reliable.
REFERENCES (41)
1.
Exhaust gas analyzer data. greentechtools.com (accessed on 3.07.2024).
 
2.
Hunicz J. Modelowanie silników spalinowych (Modeling of internal combustion engines). Lublin University of Technology Publishing House, Lublin 2014.
 
3.
Information on exhaust gas analysis composition devices. iconresearch.co.uk/diesel-engine-analysis/doctor-portable/ (accessed on 11.07.2024).
 
4.
International Association of Classification Societies, Requirements Concerning Machinery Installations. M35: Alarms, remote indications and safeguards for main reciprocating I.C. engines installed in unattended machinery spaces: 2016.
 
5.
International Association of Classification Societies, Requirements Concerning Machinery Installations. M36: Alarms and safeguards for auxiliary reciprocating I.C. engines driving generators in unattended machinery spaces: 2016.
 
6.
International Association of Classification Societies, Requirements Concerning Machinery Installations. M73: Turbochargers: 2016.
 
7.
Kęska A. The actual toxicity of engine exhaust gases emitted from vehicles: the development and perspectives of biological and chemical measurement methods. ACS Omega. 2023;8(28):24718-24726. https://doi.org/10.1021/acsome....
 
8.
Korczewski Z, Puzdrowska P. Analytical method of determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines. Combustion Engines. 2015;162(3):300-306.
 
9.
Korczewski Z. Diagnostyka eksploatacyjna okrętowych silników spalinowych – tłokowych i turbinowych. Wybrane zagadnienia (Operational diagnostics of marine internal combustion engines – piston and turbine engines. Selected issues). Gdańsk University of Technology Publishing House. Gdańsk 2017.
 
10.
Korczewski Z. Energy and emission quality ranking of newly produced low-sulphur marine fuels. Pol Marit Res. 2022;29:77-87. https://doi.org/10.2478/pomr-2....
 
11.
Korczewski Z, Rudnicki J, Piechowski L, Cenian A. Investigations of a D10 laboratory Farymann Diesel engine by means of a Langmuir probe. Combustion Engines. 2013;153(2):75-82. https://doi.org/10.19206/CE-11....
 
12.
Korczewski Z. Metodyka testowania paliw żeglugowych w rzeczywistych warunkach pracy silnika o zapłonie samoczynnym (Methodology of testing marine fuels in real working conditions of a compression ignition engine). Gdansk University of Technology Publishing House. Gdansk 2022.
 
13.
Kowalski J. Concept of the multidimensional diagnostic tool based on exhaust gas composition for marine engines. Applied Energy. 2015;150:1-8. https://doi.org/10.1016/j.apen....
 
14.
Luo J, Ying K, Bai J. Savitzky-Golay smoothing and differentiation filter for even number data. Signal Process. 2005;85:1429-1434. https://doi.org/10.1016/J.SIGP....
 
15.
Lyons RG. Wprowadzenie do cyfrowego przetwarzania sygnałów (Introduction to digital signal processing). Communications and Connectivity Publishing House. Warsaw 2000.
 
16.
Maćkowski J, Wilk A. Analiza wywiązywania się ciepła jako podstawa projektowania procesu spalania w silniku (Heat release analysis as a basis for engine combustion design). Czasopismo Techniczne. 2008;105(7):105-114.
 
17.
Molenda J, Charchalis A. Preliminary research of possibility of using thermovision for diagnosis and predictive maintenance of marine engines. Journal of KONBiN. 2019;49:49-64. https://doi.org/10.2478/jok-20....
 
18.
Optical pressure sensor. optrand.com (accessed on 3.07.2024).
 
19.
Pandurangadu V, Reddy SSK. Theoretical investigations of injection pressure in a four stroke DI diesel engine with alcohol as fuel. International Journal of Mechanical Engineering and Technology (IJMET). 2013;4(2):209-216.
 
20.
Pham VV. Research on the application of Diesel-RK in the calculation and evaluation of technical and economic criteria of marine diesel engines using the unified ULSD and biodiesel blended fuel. Journal of Mechanical Engineering Research and Developments. 2019;42:87-97. https://doi.org/10.26480/jmerd....
 
21.
Pietras D, Sobieszczański M. Identification of numerical model and computer program of SI engine with EGR. Journal of KONES Internal Combustion Engines. 2003;10(1-2):197-204.
 
22.
Pressure sensor data. gms-instruments.com/product/premet-m/ (accessed on 11.07.2024).
 
23.
Puzdrowska P. Analiza informacyjności diagnostycznej temperatury spalin wylotowych okrętowego tłokowego silnika spalinowego (Diagnostic information analysis of exhaust gas temperature of a marine piston internal combustion engine). PhD dissertation. Gdansk University of Technology. Gdansk 2023.
 
24.
Puzdrowska P. Diagnostic information analysis of quickly changing temperature of exhaust gas from marine diesel engine. Part I: single factor analysis. Pol Marit Res. 2021;28:97-106. https://doi.org/10.2478/pomr-2....
 
25.
Puzdrowska P. Metoda wyznaczania stałej czasowej termopary na podstawie pomiaru szybkozmiennej temperatury spalin wylotowych silnika o ZS (A method for determining the time constant of a thermocouple based on the measurement of the rapidly varying temperature of the exhaust gas of a diesel engine). Scientific Journals of the Naval Academy in Gdynia. 2018;108:115-133.
 
26.
Rudnicki J, Girtler J. Quantumness in diagnostics of marine internal combustion engines and other ship power plant machines. Pol Marit Res, 2023;30:110-119. https://doi.org/10.2478/pomr-2....
 
27.
Stelmasiak Z, Matyjasik M. Simulation of the combustion in a dual fuel engine with a divided pilot dose. Combustion Engines. 2012;151(4):43-54. https://doi.org/10.19206/CE-11....
 
28.
Stepanenko D, Kneba Z, Rudnicki J. Numerical methodology for evaluation the combustion and emissions characteristics on WLTP in the light duty dual-fuel diesel vehicle. Combustion Engines. 2022;189:94-102. https://doi.org/10.19206/CE-14....
 
29.
Śliwiński K. Wpływ tlenowego wzbogacania mieszanki na wskaźniki robocze i ekologiczne silników o zapłonie iskrowym (The effect of oxyfuel mixture enrichment on the operating and environmental ratings of spark-ignition engines). Cracow University of Technology Publishing House. Cracov 2013.
 
30.
Taghizadeh-Alisaraei A, Mahdavian A. Fault detection of injectors in diesel engines using vibration time-frequency analysis. Appl Acoust. 2019;143:48-58. https://doi.org/10.1016/j.apac....
 
31.
Teodorczyk A, Rychter T. Teoria silników tłokowych (Theory of reciprocating engines). Communication and Connectivity Publishing House. Warsaw 2006.
 
32.
Thermal camera data. avio.co.jp (accessed on 3.07.2024).
 
33.
Thermocouples data. termo-precyzja.com.pl (accessed on 3.07.2024).
 
34.
Varbanets R, Shumylo O, Marchenko A, Minchev D, Kyrnats V, Zalozh V et al. Concept of vibroacoustic diagnostics of the fuel injection and electronic cylinder lubrication systems of marine diesel engines. Pol Marit Res. 2022;29:88-96. https://doi.org/10.2478/pomr-2....
 
35.
Wang G, Zhou Y, Zhang Q, Wang S. The small sample failure distribution model of diesel engine component parts using FMECA approach. International Journal of Modeling and Optimalization. 2017;7(1):19-23.
 
36.
Wisłocki K. Studium wykorzystania badań optycznych do analizy procesów wtrysku i spalania w silnikach o zapłonie samoczynnym (A study of the use of optical testing for the analysis of injection and combustion processes in compression ignition engines). Habilitation dissertation. Poznan University of Technology Publishing House. Poznan 2004.
 
37.
Wiśniewski S. Termodynamika techniczna (Technical thermodynamics). Scientific and Technical Publishing House. Warsaw 2022.
 
38.
Witkowski K. Stan diagnostyki technicznej okrętowych silników tłokowych (The state of technical diagnostics of marine diesel engines). Diagnostics. 2005;34:85-92.
 
39.
Wysocki J, Witkowski K. Increasing the efficiency of marine engine parametric diagnostics based on analyses of indicator diagrams and heat-release characteristics. Energies. 2023;16(17):6240. https://doi.org/10.3390/en1617....
 
40.
Zacharewicz M, Kniaziewicz T. Research on energetic processes in a marine diesel engine driving a synchronous generator for diagnostic purposes. Part 2 – mathematical model of the processes. Journal of Polish CIMEEAC. 2016;11(1):199-209.
 
41.
Zacharewicz M. Metoda diagnozowania przestrzeni roboczych silnika okrętowego na podstawie parametrów gazodynamicznych w kanale zasilającym turbosprężarkę (A method for diagnosing the working spaces of a marine engine on the basis of gas-dynamic parameters in the feed channel of a turbocharger). PhD dissertation. Naval Academy. Gdansk 2009.
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top