Cylinder-to-cylinder and cycle-to-cycle variation in combustion process in radial aircraft engine
 
 
More details
Hide details
1
Faculty of Mechanical Engineering at the Lublin University of Technology
 
 
Publication date: 2017-02-01
 
 
Combustion Engines 2017,168(1), 77-83
 
KEYWORDS
ABSTRACT
Cycle-to-cycle variation in combustion in a single cylinder of a radial engine has an impact on that in others and the entire engine. Steady- and transient-state engine operation was investigated, and the transient states were generated by cyclic changes in the timing of fuel injection to a given cylinder, having others operated on the same mixture composition. The measurement of pressure in the combustion chamber allowed for specifying indicated mean effective pressure (IMEP) in all cycles. The time series of IMEP were studied with mathematical techniques of non-linear dynamics, i.e. a wavelet transform and a multifractal analysis. Controlled disturbances in mixture composition in a single cylinder can have an impact on certain cylinders only. Cylinders 3, 5, 7 and 9 are most responsive to such disturbances, which proves their least cycle-to-cycle variation in combustion.
 
REFERENCES (22)
1.
BERCKÜLLER, M., TAIL, N.P., GREENHALGH, D.A. The influence of local fuel concentration on cyclic variability of a lean burn stratified-charge engine. SAE Technical Paper. 1997, 970826.
 
2.
CZARNIGOWSKI, J., WENDEKER, M., JAKLIŃSKI, P. et al. Testing non-uniformity of the combustion process in a radial aircraft engine. SAE Technical Paper. 2007, 2007-01-2074.
 
3.
DAW, C.S., FINNEY, C.E., KENNEL, M.B. Symbolic approach for measuring temporal "irreversibility". Physical Review E 62. 2000, 2, 1912-1921.
 
4.
DAW, C.S., KENNEL, M.B., FINNEY, C.E.A., CONNOLLY, F.T. Observing and modeling nonlinear dynamics in an internal combustion engine. Phys. Rev. E. 1998, 57, 2811-2819.
 
5.
FOAKES, A.P., POLLARD, D.C. Investigation of a chaotic mechanism for cycle-to-cycle variations, Combustion Science and Technology.1993, 90, 281–287.
 
6.
GĘCA, M., LITAK, G., CZARNIGOWSKI, J., PIETRYKOWSKI, K. Diagnostics of the aircraft radial engine by using Recurrence Plots method. PTNSS CONGRESS 2009, PTNSS-2009-SC-058, 133-140.
 
7.
GOLDBERGER, A.L. AMARAL, L.A.N., GLASS, L. et al. PhysioBank, physioToolkit, and physioNet components of a new research resource for complex physiologic signals, Circulation. 2000, 101, E215, and the software provided on the webpage www.physionet.org/physio-tools/multifractal/.
 
8.
HEYWOOD, J.B. Internal Combustion Engine Fundamentals, MCGraw-Hill Science Engineering. 1988.
 
9.
HU, Z. Nonlinear instabilities of combustion processes and cycle-to-cycle variations in spark-ignition engines, SAE paper. 1996, 961197.
 
10.
JAKLIŃSKI, P., WENDEKER, M., CZARNIGOWSKI, J. et al. Analiza ciśnienia indykowanego w gwiazdowym tłokowym silniku lotniczym zasilanym benzyną lotniczą 100LL i benzyną samochodową ES95, Silniki spalinowe. 009-SC2 Seria Specjalna, 2009, 162-170.
 
11.
KANTOR, J.C. A dynamical instability of spark-ignited engines, Science. 1984, 224, 1233.
 
12.
LITAK, G., WENDEKER, M., KRUPA, M., CZARNIGOWSKI, J. A numerical study of a simple stochastic/deterministic model of cycle-to-cycle combustion fluctuations in spark ignition engines. Journal of Vibration and Control. 2005, 11371-11379.
 
13.
LONGWIC, R., SEN, A.K., GÓRSKI, K. et al. Cycle-to cycle variations of the combustion process in a Diesel engine powered by different fuels. Journal of Vibroengineering. 2011, 13, 120-127.
 
14.
MIKALSEN, R. ROSKILLY, A.P. A computational study of free-piston diesel engine combustion. Applied Energy. 2009, 86, 1136-1143.
 
15.
MOULIN, P., CORDE, G. CHAUVIN, J., CASTAGNÉ, M. Cylinder individual AFR estimation based on a physical model and using Kalman filters. SAE Technical Paper. 2004, 2004-01-422.
 
16.
MUZY, J.F., BACRY, E., ARNEODO, A. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. 1993, E 47, 875-884.
 
17.
NEWLAND, D.E. Practical signal analysis: do wavelets make any difference! Processings of DTC’97 1997 ASME Design Engineering Technical Conference, September14-17, 1997, Sacramento, Kalifornia.
 
18.
SEN, A. K., LITAK, G., KAMINSKI, T., WENDEKER, M. Multifractal and statistical analyses of heat release fluctuations in a spark ignition engine. Chaos. 18, 1-6.
 
19.
SZLACHETKA, M., GĘCA, M., WENDEKER, M., STĘPNIEWSKI, A. Badania porównawcze dynamiki filmu paliwowego w stanach dynamicznych silnika zasilanego benzyną oraz alkoholem etylowym, V Konferencja Naukowa Ekoenergia ’2010, Materiały konferencyjne – AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 2010, 95-102.
 
20.
TORRENCE, C., COMPO, G.P. A practical guide to wavelet analysis, Bull. Amer. Meteor. Soc. 1998, 79, 61-78.
 
21.
OPTRAND INC., www.optrand.com.
 
22.
www.radialengines.com/fuel_injection/index.htm.
 
 
CITATIONS (1):
1.
Investigation on combustion instability of electronic fuel injected multi-cylinder radial piston engine through multifractal technique – A comparative analysis
Michal Jan Gęca, Łukasz Grabowski, Konrad Pietrykowski, Grzegorz Litak, Nanthagopal Kasianantham
Case Studies in Thermal Engineering
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top