Friction reducing performance of carbon nanotubes covered pistons in internal combustion engines – engine test results
 
More details
Hide details
1
Faculty of Machines and Transport at Poznan University of Technology.
 
2
Boston College, Department of Physics, Boston College.
 
3
Faculty of Mechanical Engineering and Management at Poznan University of Technology.
 
 
Publication date: 2018-02-01
 
 
Combustion Engines 2018,172(1), 14-24
 
KEYWORDS
ABSTRACT
This article discusses the posibility of reducing friction losses in internal combustion engines by using carbon nanotubes, pointing out the large potential of this application. Experimental pistons were made of standard aluminum alloy and coated with a layer of nanotube deposits by spraying them with an aqueous solution containing the binder. The proposed technology of applying layers of nanotubes can be adopted in industrial-scale production. Engine tests were carried out showing a significant reduction of the engine motoring torque, up to 16% for the experimental pistons, thus confirming the favorable tribological properties of nanotubes observed in tribological research and reported by many authors. Supplementary tests were carried out: SEM, EDS, coordinate measuring technique, and x-ray tomography. An alternative technology for hierarchical nanotube multilayer coatings electro-deposition was proposed.
 
REFERENCES (44)
1.
ABAD, M.D., SÁNCHEZ-LÓPEZ, J.C., BERENGUERMURCIA, A. et al. Catalytic growth of carbon nanotubes on stainless steel: characterization and frictional properties. Diamond and Related Materials. 2008, 17(11).
 
2.
ADAM, A., PREFOT, M., WILHELM, M. Kurbelwellenlager für Motoren mit Start-Stop-System, MTZ. 2010, 12.
 
3.
ATSUSHI, H., NOBUAKI, Y. Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribology International. 2004, 37(11-12).
 
4.
BAUGHMAN, R.H., ZAKHIDOV, A.A., DE HEER, W.A. Carbon Nanotubes – the route toward applications. Science. 2002, 787-792.
 
5.
BHUSHAN, B. Handbook of nanotechnology. Springer-Verlag. Berlin-Heidelberg 2010.
 
6.
BOSSDORF-ZIMMER, B., KRINKE, S., LÖSCHE-TER, H.T. Die well-to-wheel-Analyse Umwelteigenschaften mess- und planbar Machen. MTZ. 2012, 2.
 
7.
Carbon nanotubes, www.nano-lab.com.
 
8.
CHAUVEAU, V. Le pouvoir lubrifiant des nanotubes de carbonne. PhD dissertation. L’Ecole Centrale de Lyon, 2010.
 
9.
COOK, E.H., BUEHLER, M.J., SPAKOVSZKY, Z.S. Mechanism of friction in rotating carbon nanotube bearings. Journal of the Mechanics and Physics of Solids. 2013, 61, 652-673.
 
10.
CUI, L.J., GENG, H.Z., WANG, W.Y. et al. Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon. 2013, 54.
 
11.
DE VOLDER, M.F., TAWFICK, S.H., BAUGHMAN, R.H. et al. Carbon nanotubes: present and future commercial applications. Science. 2013, 339.
 
12.
DEUSS, T., EHNIS, H., BASSET, M. et al. Reibleistungsmessungen am Befeuerten Dieselmotor – Zyklusrelevante CO2-Ersparnis. MTZ. 2011, 12.
 
13.
DEUSS, T., EHNIS, H., FREIER, R. et al. Reibleistungsmessungen am Befeuerten Dieselmotor – Potenziale der Kolbengruppe. MTZ. 2010, 5.
 
14.
DEUSS, T., EHNIS, H., ROSE, R.K. et al. Reibleistungsmessungen am Befeuerten Dieselmotor – Einfluss von Kolbenschaftbeschichtungen. MTZ. 2011, 4.
 
15.
FENIMORE, A.M., YUZVINSKY, T.D., HAN, W.Q. et al. Rotational actuators based on carbon nanotubes. Nature. 2003, 424.
 
16.
GOLCHIN, A., WIKNER, A., EMAMI, N. An investigation into tribological behavior of multi-walled carbon nanotube/graphene oxide reinforced UHMWPE in water lubricated contacts. Tribology International. 2016, 95.
 
17.
GOLLOCH, R. Downsizing bei Verbrennungsmotoren. Springer-Verlag. Berlin-Heidelberg 2005.
 
18.
HOLMBERG, K., ANDERSSON, P., ERDEMIR, A. Global energy consumption due to friction in passenger cars. Tribology International. 2012, 47.
 
19.
HUANG, Y.Y., TERENTJEV, E.M. Dispersion of carbon nanotubes: mixing, sonication, stabilization and composite properties. Polymers. 2012, 4.
 
20.
HWANG, H.J., JUNG, S.L., CHO, K.H. et al. Tribological performance of brake friction materials containing carbon nanotubes. Wear. 2010, 268.
 
21.
JOHANNE, L.B., YOWELL, L.L., SOSA, E. et al. Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology. 2006, 17.
 
22.
JOLY-POTTUZ, L., DASSENOY, F., VACHER, B. et al. Ultralow friction and wear behavior of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribology International. 2004, 37.
 
23.
KAŁUŻNY, J. Experimental applications of carbon nanotubes in the construction of internal combustion engines. Poznan University of Technology Publishing House, Poznan 2013.
 
24.
KAŁUŻNY J. Wpływ kształtu powierzchni bocznej tłoka na parametry filmu olejowego pokrywającego gładź cylindra. Doctoral dissertation. Poznan 2004.
 
25.
KASHYAP, K.T., RAHUL, R., YAMDAGNI, S. Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scripta Materialia. 2005.
 
26.
KENNEDY, M., HOPPE, S., ESSER, J. Kolbenringbeschichtung zur Reibleistungssenkung im Ottomotor. MTZ. 2012, 5.
 
27.
LIN, R.M., LU, C. Modeling of interfacial friction damping of carbon nanotube-based nanocomposites. Mechanical Systems and Signal Processing. 2010, 24(8).
 
28.
LIU, Q., KE, L., LIU, F. et al. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials and Design. 2013, 45.
 
29.
LIU, Z.Y., XIAO, B.L., WANG, W.G. et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon. 2013, 62.
 
30.
LU, H. et al. Friction and adhesion properties of vertically aligned multi-walled carbon nanotube arrays and fluoronanodiamond films. Carbon. 2008, 46.
 
31.
LUCAS, M., PALACI, I., RIEDO, E. et al. Hindered rolling and friction anisotropy in supported carbon nanotubes. Nature Materials. 2009, 8.
 
32.
Mahle GmbH – Piston and engine testing. Stuttgart 2012.
 
33.
MAUCH, A., TOPHOVEN, J., TRZEBIATOWSKI, T. et al. Potenziale und Grenzen des Downsizing beim Dieselmotor. MTZ. 2011, 7-8.
 
34.
MENG, H., SUI, G.X., XIE, G.Y. et al. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under sliding and water lubricated condition. Composites Science and Technology. 2009, 69(5).
 
35.
OLEK, M., KEMPA, K., JURGA, S. et al. Nanomechanical properties of silica coated multiwall carbon nanotubespoly(methyl methacrylate) composites. Langmuir. 2005, 21.
 
36.
QIANMING, G., DAN, L., XIAOSU, Y. et al. Tribology of polymeric nanocomposites. Friction and Wear of Bulk Materials and Coatings. 2013.
 
37.
SALVETAT, J.P. et al. Mechanical properties of carbon nanotubes. Applied Physics. 1999, 69.
 
38.
SERVANTIR, J., GASPARD, P. Rotational dynamics and friction in double-walled carbon nanotubes. Physical Review. 2006, 73.
 
39.
SPICHER, U. Analyse der Effizienz zukünftiger Antriebssysteme für die individuelle Mobilität. MTZ. 2012, 2.
 
40.
TEHRANI, M. et al. Hybrid carbon fiber/carbon nanotube composites for structural damping applications. Nanotechnology. 2013, 24.
 
41.
TUNG, S.C., MCMILLAN, M.L. Automotive tribology overview of current advances and challenges for the future. Tribology International. 2004, 37.
 
42.
VANDER, WALL, R.L. et al. Friction properties of surfacefluorinated carbon nanotubes. Wear. 2005, 259(1-6).
 
43.
YAN, L., WANG, H., WANG, CH. et al. Friction and wear properties of aligned carbon nanotubes reinforced epoxy composites under water lubricated condition. Wear. 2013, 308.
 
44.
ZHANG, S., LIU, W.K., RUOFF, R.S. Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Letters. 2004, 4.
 
 
CITATIONS (5):
1.
Reducing friction and engine vibrations with trace amounts of carbon nanotubes in the lubricating oil
Jarosław Kałużny, Marek Waligórski, Grzegorz Szymański, Jerzy Merkisz, Jacek Różański, Marek Nowicki, Karawi Al, Krzysztof Kempa
Tribology International
 
2.
Experimental study of carbon nanotubes in high viscosity lubricants
Jarosław KAŁUŻNY, Grzegorz KINAL, Aleksander STEPANENKO, Jerzy MERKISZ
Combustion Engines
 
3.
Biological activity of carbon nanoparticles produced in combustion process
Jarosław KAŁUŻNY, Natalia IDASZEWSKA, Tomasz RUNKA, Adam PIASECKI, Marek NOWICKI, Jerzy MERKISZ
Combustion Engines
 
4.
Machine Learning Approach for Application-Tailored Nanolubricants’ Design
Jarosław Kałużny, Aleksandra Świetlicka, Łukasz Wojciechowski, Sławomir Boncel, Grzegorz Kinal, Tomasz Runka, Marek Nowicki, Oleksandr Stepanenko, Bartosz Gapiński, Joanna Leśniewicz, Paulina Błaszkiewicz, Krzysztof Kempa
Nanomaterials
 
5.
The Indirect Tribological Role of Carbon Nanotubes Stimulating Zinc Dithiophosphate Anti-Wear Film Formation
Jarosław Kałużny, Andrzej Kulczycki, Wojciech Dzięgielewski, Adam Piasecki, Bartosz Gapiński, Michał Mendak, Tomasz Runka, Damian Łukawski, Oleksandr Stepanenko, Jerzy Merkisz, Krzysztof Kempa
Nanomaterials
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top