Hydroxyl radicals as an indicator of knocking combustion in the dual-fuel compression-ignition engine
 
More details
Hide details
1
Faculty of Automotive and Construction Machinery Engineering at Warsaw University of Technology.
 
2
Automotive Industry Institute, Department of Fuels and Renewable Energy and in Cardinal Stefan Wyszynski University
 
 
Publication date: 2017-02-01
 
 
Combustion Engines 2017,168(1), 178-185
 
KEYWORDS
ABSTRACT
The occurrence of knocking combustion is one of the basic problems of dual-fuel compression-ignition engines supplied with diesel oil and gaseous fuel. In order to detect this phenomenon and evaluate its intensity, several methods are commonly used, including the analysis of pressure of working medium in the combustion chamber of the engine or vibrations of certain engine components. This paper discusses the concept of using mass fraction of hydroxyl radicals as the indicator of the occurrence of knocking combustion. Current knowledge on the conditions of hydroxyl radical formation in the engine combustion chamber has been systematized and the results of research on this subject have been presented. Theoretical considerations are illustrated by exemplary results of simulation studies of the combustion process in a dual-fuel compression-ignition engine supplied with diesel oil and methane. The conclusions drawn may be -useful for the development of dual-fuel engine control systems.
 
REFERENCES (42)
1.
ABAS, N., KALAIR, A., KHAN, N. Review of fossil fuels and future energy technologies. Futures. 2015, 69, 31-49.
 
2.
ASHOK, B., ASHOK, S.D., KUMAR, C.R. LPG diesel dual fuel engine – a critical review. Alexandria Engineering Journal. 2015, 54, 105-126.
 
3.
AZIMOV, U., TOMITA, E., KAWAHARA, N. Combustion and exhaust emission characteristics of diesel micro-pilot ignited dual-fuel engine. In: Diesel engine – combustion, emissions and condition monitoring. Bari S. (Ed.). InTech, 2013.
 
4.
BALLAIS, R., GALLARDO-RIUZ, J.M., MEROLA, S.S. Optical diagnostics of the cycle-to-cycle variation in the kernel development and abnormal combustion: SI small engine. Journal of KONES Powertrain and Transport. 2010, 17(2), 17-25.
 
5.
BRECQ, G., BELLETTRE, J., TAZEROUT, M. A new indicator for knock detection in gas SI engines. International Journal of Thermal Sciences. 2002, 42, 523-532.
 
6.
CHMIELEWSKI, A., GUMIŃSKI, R., MĄCZAK, J., RADKOWSKI, S., SZULIM, P. Aspects of balanced development of RES and distributed micro cogeneration use in Poland: case study of a µCHP with Stirling engine. Renewable and Sustainable Energy Reviews. 2016, 60, 930-952.
 
7.
CHMIELEWSKI, A., LUBIKOWSKI, K., MĄCZAK, J., SZCZUROWSKI, K. Geometrical model of cogeneration system based on a 1 MW gas engine. Combustion engines. 2015, 162(1), 3-10.
 
8.
CUMMINS. Operation and maintenance manual. Automotive, recreational vehicle, bus, and industrial 53.9 and 55.9 series engines. Cummins Engine Company, 2000.
 
9.
FG INSIGHT. www.fginsight.com/vip/vip/ buyers-guidecase-ih-maxxum-mx135-tractor-3174.
 
10.
GAYDON, A.G., WOLFHARD, H.G. Flames, their structure, radiation and temperature. London, 1979.
 
11.
GENG, P., CAO, E., TAN, Q., WEI, L. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renewable and Sustainable Energy Reviews. 2017, 71, 523-534.
 
12.
GOLDEMBERG, J., JOHANSSON, T.B., REDDY, A.K.N., WILLIAMS, R.H. Energy for the new millennium. Ambio: A Journal of the Human Environment. 2001, 30, 330-337.
 
13.
GRIFFITHS, J.F., WHITAKER, B.J. Thermokinetic interactions leading to knock during homogenous charge compression ignition. Combustion and Flame. 2002, 131, 386-399.
 
14.
HARRINGTON, J., MUNSHI, S., NEDELCU, C., OUELLETTE, P., THOMPSON, J., WHITEFIELD, S. Direct injection of natural gas in a heavy-duty diesel engine. SAE Technical Paper. 2002, 2002-01-1630.
 
15.
HASHIMOTO, S., AMINO, Y., YOSHIDA, K., SHOJI, H., SAIMA, A. Analysis of OH radical emission intensity during autoignition in a 2-stroke SI engine. In: Proceedings of the 4th COMODIA. 1998, 405-410.
 
16.
HEGAB, A.H., LA ROCCA, A., SHAYLER, P.J. Towards keeping diesel fuel supply and demand in balance: Dualfuelling of diesel engines with natural gas. Renewable and Sustainable Energy Reviews. 2017, 70, 666-697.
 
17.
ITOH, T., NAKADA, T., TAKAGI, Y. Emission characteristics of OH and C2 radicals under engine knocking. JSME International Journal Series B. 1995, 38, 230-237.
 
18.
JAKUBIAK-LASOCKA, J., LASOCKI, J., SIEKMEIER, R., CHŁOPEK, Z. Impact of traffic-related air pollution on health. Advances in Experimental Medicine and Biology. 2015, 834, 21-29.
 
19.
KAWAHARA, N., TOMITA, E., SAKATA, Y. Autoignited kernels during knocking combustion in a sparkignition engine. Proceedings of the Combustion Institute. 2007, 31, 2999-3006.
 
20.
KRUCZYŃSKI, S.W., ORLIŃSKI, P., WOJS, M.K., OWCZUK, M. Ocena możliwości spalania biogazu w silniku o zapłonie samoczynnym z dawką pilotującą oleju napędowego. Zeszyty Naukowe Instytutu Pojazdów. 2014, 100(4), 103-111.
 
21.
KRUCZYŃSKI, S.W., ORLIŃSKI, P., WOJS, M.K., OWCZUK, M., MATUSZEWSKA, A. Ocena zjawiska spalania stukowego w dwupaliwowym silniku ciągnika rolniczego zasilanego dodatkowo biogazem. Combustion Engines. 2015, 162(13), 639-646.
 
22.
LASOCKI, J. Engine knock detection and evaluation: a review. Zeszyty Naukowe Instytutu Pojazdów. 2016, 109(5), 41-50.
 
23.
LLOYD, A.C., CACKETTE, T.A. Diesel engines: environmental impact and control. Journal of the Air & Waste anagement Association. 2001, 51, 809-47.
 
24.
LUFT, S. A dual-fuel compression ignition engine – distinctive features. Combustion Engines. 2010, 141(2), 33-39.
 
25.
MATUSZEWSKA, A., OWCZUK, M., ZAMOJSKA-JAROSZEWICZ, A., JAKUBIAK-LASOCKA, J, LASOCKI, J., ORLIŃSKI, P. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Conversion and Management. 2016, 125, 309-319.
 
26.
MEROLA, S.S., VAGLIECO, B.M. Knock investigation by flame and radical species detection in spark ignition engine for different fuels. Energy Conversion and Management. 2007, 48, 2897-2910.
 
27.
MOHAMED, C. Autoignition of hydrocarbons in relation to engine knock. PhD thesis. University of Leeds, 1997.
 
28.
PAPAGIANNAKIS, R.G., RAKOPOULOS, C.D., HOUNTALAS, D.T., RAKOPOULOS, D.C. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions, Fuel. 2010, 89, 1397-1406.
 
29.
PIERNIKARSKI, D., HUNICZ, J., KOMSTA, H. Detection of knocking combustion in a spark ignition engine using optical signal from the combustion chamber. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2013, 15(3), 214-220.
 
30.
RÓŻYCKI, A. Granica spalania stukowego w dwupaliwowym silniku o zapłonie samoczynnym. Czasopismo Techniczne z. 11. Mechanika. z. 7-M. Wydawnictwo PK, Kraków 2008.
 
31.
SAMOILENKO, D., CHO, H.M. Improvement of combustion efficiency and emission characteristics of IC diesel engine operating on ESC cycle applying variable geometry turbocharger (VGT) with vaneless turbine volute. International Journal of Automotive Technology. 2013, 14(4), 521-528.
 
32.
SELIM, M.Y.E. Sensitivity of dual-fuel engine combustion and knocking limits to gaseous fuel composition. Energy Conversion and Management. 2004, 45, 411-425.
 
33.
SHOJI, H., SAIMA, A., SHIINO, K., IKEDA, S. Clarification of abnormal combustion in a spark ignition engine. SAE Technical Paper. 1992, 922369.
 
34.
STELMASIAK, Z. Limitations of enrichment of gaseous mixture in dual fuel engines. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2014, 16(4), 537-544.
 
35.
STELMASIAK, Z., MATYJASIK, M. Simulation of the combustion in a dual fuel engine with a divided pilot dose. Silniki Spalinowe. 2012, 151(4), 43-54.
 
36.
THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION (ICCT). European Vehicle Market Statistics. Pocketbook 2014 Edition.
 
37.
TOSAKA, Y., SHOJI, H., SAIMA, A. A study of the influence of intermediate combustion products on knocking. JSAE Review. 1995, 16, 233-238.
 
38.
WAGEMAKERS, A.M.L.M., LEERMAKERS, C.A.J. Review on the effects of dual-fuel operation, using diesel and gaseous fuels, on emissions and performance. SAE Technical Paper. 2012, 2012-01-0869.
 
39.
WIBE, I.I. Brennverlauf und Kreisprozeß von Verbrennungsmotoren (Rate of heat release in cyclic process of internal combustion engines). Verlag Technik, Berlin 1970.
 
40.
ZHEN, X., WANG, Y., ZHU, Y. Study of knock in a high compression ratio SI methanol engine using LES with detailed chemical kinetics. Energy Conversion and Management. 2013, 75, 523-531.
 
41.
ZHEN, X.D., WANG, Y., XU, S.Q., ZHU, Y.S., TAO, C.J., XU, T., SONG, M.Z. The engine knock analysis – an overview. Applied Energy. 2012, 92, 628-636.
 
42.
ŻÓŁTOWSKI, A. Knock combustion in dual fuel diesel engine. Journal of KONES Powertrain and Transport. 2014, 21(4), 547-553.
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top