Influence of the method of implementing the forced air flow through the cooling system on the temperature of the coolant in heavy-duty engines
 
More details
Hide details
1
Faculty of Mechanical Engineering and Robotics at AGH University of Science and Technology.
 
 
Publication date: 2017-11-01
 
 
Combustion Engines 2017,171(4), 51-55
 
KEYWORDS
ABSTRACT
The article discusses the problem how forced air flow is implemented through the cooling module of heavy-duty engines. The kinematic connection between the coolant pump and the crankshaft of the engine, results in the fact that the pump performance often does not correspond to the engine demand at its part load. In conjunction with the fan drive method, the temperature of the coolant may be too low or too high for part load. The study was carried out in order to calculate the parameters of the cooling system in heavy-duty engines for maximum power and maximum torque, taking into account a mechanical fan drive, a hydraulic fan drive and an electric fan drive.
REFERENCES (14)
1.
ZHOU, B., LAN, X., XU, X., LIANG, X. Numerical model and control strategies for the advanced thermal management system of diesel engine. Applied Thermal Engineering. 2015, 82, 368-379.
 
2.
EID, S.M. Development and analysis of a variable position thermostat for smart cooling system of a light duty diesel vehicles and engine emissions assessment during NEDC. Applied Thermal Engineering. 2016, 99, 358-372.
 
3.
KNEBA, Z. Development trends of automotive engine cooling systems. Combustion Engines. 2013, 154(3), 291-296.
 
4.
KRAKOWSKI, R. Wpływ podwyższonej temperatury płynu chłodzącego na zwiększenie ekonomiczności pracy tłokowego silnika spalinowego. Zeszyty naukowe Akademii Morskiej w Gdyni. 2011, 71.
 
5.
KRAKOWSKI, R. Model and experimental research of the pressure cooling system for the internal combustion engine. Journal of KONES Powertrain and Transport. 2014, 21(4).
 
6.
MITIANIEC, W. Assessment of total efficiency in adiabatic engines. Scientific Conference on Automotive Vehicles and Combustion Engines. IOP Conf. Series: Materials Science and Engineering. 2016, 148, 012080.
 
7.
WORSZTYNOWICZ, B. Bilans cieplny silników spalinowych typu heavy-duty w aspekcie norm emisji. Silniki spalinowe i ekologia – opracowanie monograficzne. Wydawnictwo Politechniki Krakowskiej. Kraków 2014.
 
8.
WORSZTYNOWICZ, B. The influence of fuel type on the cooling system heat exchanger parameters in heavy – duty engines. Scientific Conference on Automotive Vehicles and Combustion Engines, IOP Conf. Series: Materials Science and Engineering. 2016, 148, 012080.
 
9.
WORSZTYNOWICZ, B., UHRYŃSKI, A. The analysis of heating process of catalytic converter using thermo-vision. Combustion Engines. 2015, 162(3), 41-51.
 
10.
CHEN, X., YU, X., LU, Y. et al. Study of different cooling structures on the thermal status of an internal combustion engine. Applied Thermal Engineering. 2017, 116, 419-432.
 
11.
Cummins – factory data, www.cummins.com (accessed 2017.10.09)
 
12.
Mercedes-Benz – factory data, media.daimler.com
 
13.
VW Self study programme 296.
 
14.
Mercedes-Benz Polska Sp. z o.o., www.mercedes-benz.pl.
 
 
CITATIONS (1):
1.
Optimization of the electric bus radiator design in terms of noise emissions and energy consumption by computational fluid dynamics
Anna Janicka, Maciej Zawiślak, Artur Głogoza, Radosław Włostowski
Combustion Engines
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top