A mathematical model of joint operation of a piston engine with pulse turbine drive, compressor as well as air supply of a diesel locomotive is presented in the article. This model in an integral part of the complex engine-generator power unit of a diesel locomotive in steady states and transient conditions, developed by the authors. The periodic process in the exhaust manifold is represented as two specific characteristic ranges which encompass the process of forced exhaust and the scavenging process. The scavenging calculation is carried out jointly with the processes taking place in the inlet manifold of the engine, including inlet devices of the locomotive. The process of forced exhaust is calculated separately from the inlet processes and doesn`t require usage of empirical coefficients of impulsiveness. Both processes are represented as systems of nonlinear algebraic equations describe in the quasi-steady flow of working fluid in the elements of the inlet and exhaust tracts. The gas-dynamic calculation of the turbine in the transition process is conducted while taking into account changes in flow angles on the rotor blades. As a result of numerical calculation of the a8S22W diesel operational indices in transient modes, a satisfactory compliance of the calculated and the experimental results was obtained.
REFERENCES(42)
1.
BABEL, М. Повышение эффективности работы тепловозных дизелей а8С22 согласованием характеристик нагружения с режимами эксплуатации. Dissertation, Moscow, MIIT, 1989. m8.mech.pk.edu.pl/dissertation_babel/DR_Babel_spis_tresci.pdf.
BABEL, M. Теоретические основы и методология выбора объемов и технологий модернизации тепловозов по критерию стоимости жизненного цикла. Dissertation, Moscow, VNIIZhT, 2014, www.vniizht.ru/fileadmin/site/files/Babel_doktorska_dissertacia.pdf.
BABEL, M., SZKODA, M. Diesel locomotive efficiency and reliability improvement as a result of power unit load control system modernisation. Eksploatacja i Niezawodność – Maintenance and Reliability. 2016, 18(1), 38-49.
BELLIS, V., MARELLI, S., BOZZA, F., CAPOBIANCO, M. 1D simulation and experimental analysis of a turbocharger turbine for automotive engines under steady and unsteady flow conditions. Energy Procedia. 2014, 45, 909-918.
BIANCHI, G.M., FALFARI, S., PAROTTO, M., OSBAT, G. Advanced modelling of common rail injector dynamics and comparison with experiments. SAE Technical Paper. 2003-01-0006.
CHEN, H., HAKEEM, I., MARTINEZ-BOTAS, R.F. Modelling of a turbocharger turbine under pulsating inlet conditions. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 1996, 210, 397-408.
CHIONG, M.S., RAJOO, S., ROMAGNOLI, A., COSTALL, A.W., MARTINEZ-BOTAS, R.F. Integration of meanline and one-dimensional methods for prediction of pulsating performance of a turbocharger turbine. Energy Conversion and Management. 2014, 81, 270-281.
CHIONG, M.S, PADZILLAH, M.H, RAJOO, S., ROMAGNOLI, A., COSTALL, A.W., MARTINEZBOTAS, R.F. Comparison of experimental, 3D and 1D model for a mixed-flow turbine under pulsating flow conditions. Jurnal Teknologi. 2015, 77, 61-68.
CHŁOPEK, Z. Modelowanie procesów emisji spalin w warunkach eksploatacji trakcyjnej silników spalinowych. Prace Naukowe Seria „Mechanika”. 1999, z. 173, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
FERENC, N. Modelowanie numeryczne procesu regulacji okrętowego silnika wysokoprężnego z uwzględnieniem nieliniowości. Zeszyty naukowe Politechniki Śląskiej. 1978, 567.
GALINDO, J., FAJARDO, P., NAVARRO, R., GARCACUEVAS, L.M. Characterization of a radial turbocharger turbine in pulsating ow by means of CFD and its application to engine modelling. Applied Energy. 2013, 103, 116-127.
IKEYA, N., YAMAGUCHI, H., MITSUBORI, K., KONDOH, N. Development of advanced model of turbocharger for automotive engines. SAE Technical Paper. 1992, 1992-02- 920047.
KESSEL, J.A., SCHMIDT, M., SCHAFFNIT, J. Modeling and real-time simulation of a turbocharger with variable turbine geometry (Vtg). SAE Technical Paper. 1998, 1998-02-980770.
KOSSOV, E., BABEL, M. Zagadnienia modelowania eksploatacyjnych warunków pracy trakcyjnych silników spalinowych. Silniki Spalinowe. 1988, 2, 27-31, m8.mech. pk.edu.pl/articles/Artykul_SS_1988.pdf.
MA, H., XU, H., WANG, J. Real-time control oriented HCCI engine cycle-to cycle dynamic modelling. International Journal of Automation and Computing. 2011, 8(3), 317-325.
MARECKA-CHŁOPEK, E., CHŁOPEK, Z. Badania porównawcze emisji zanieczyszczeń z silników spalinowych o różnych zastosowaniach. Transport samochodowy. 2009, 9,71-84.
PANCHAREVSKI, G., IVANOV, V. Bestimmung der wärmeverluste in diffusor eines turbokompressors. IV Symposium Klimatechnik, Belüftung Wärmeaustausch in Transportwesen – Tagungsmaterialen. Politechnika Szczecińska. 1992.
SERRANO, J.R., ARNAU, F.J., PIQUERAS, P., ONORATI, A., MONTENEGRO, G. 1D gas dynamic modelling of mass conservation in engine duct systems with thermal contact discontinuities. Mathematical and Computer Modelling. 2009, 49, 1078-1088.
SIGURDSSON, E., INGVORSEN, K.M., JENSEN, M.V, MAYER, S. Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines. Applied Energy. 2014, 123, 37-46.
WENDEKER, M., GODULA, A. Research on variability in control parameters for spark ignition engines in real-life operation. Eksploatacja i Niezawodność – Maintenance and Reliability. 2002, 16(4), 12-23.
WISŁOCKI, K. Badanie wpływu upustowej regulacji parametrów doładowania na własności trakcyjne turbodoładowanych silników spalinowych. Dysertacja, Wydawnictwo Politechniki Poznańskiej. 1986.
ZINNER, K. Aufladung von Verbrennungsmotoren – Наддув двигателей внутреннего сгорания. Перевод с немецкого. Под редакцией Н.Н. Иванченко. Ленинград, Машиностроение. 1978.
Modelo matemático de un plenum para obtener las características dinámicas del flujo másico de un turbocargador José Ricardo Bermúdez Santaella, Oscar Javier Suárez Sierra, Juan José Cabello Eras Matéria (Rio de Janeiro)
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.