The article presents a mathematical model demonstrating the synergy of HEV energetic machines in accordance with the model predictive control. Then the results of road tests are presented. They were based on the factory control of the above-mentioned system. The results of the operating parameters of the system according to the factory control and the results of the operating parameters according to the model predictive control were compared. On their basis, it could be concluded that the model predic-tive control contributed to changes in the power and electrochemical charge level of the energy storage system from 50.1% (the beginning) to 56.1% (the end of course) and for MPC from 50.1% (the begin-ning) to 59.9% (the end of the course). The applied MPC with 13 reference trajectories (LQT) of power machines of the series-parallel HEV allowed for fuel savings on the level of 4%.
REFERENCES(38)
1.
Abido MA. Optimal power flow using particle swarm optimization. Int J Elec Power. 2002;(24):563-571. https://doi.org/10.1016/S0142-....
Barsali S, Miulli C, Possenti A. A control strategy to minimalize fuel consumption of series hybrid electric vehicles. IEEE Trans Veh Technol. 2004;19(1):187-195. https://doi.org/10.1109/TEC.20....
Bieniek A, Graba M, Mamala J, Prażnowski K, Hennek K. Energy consumption of a passenger car with a hybrid powertrain in real traffic conditions. Combustion Engines. 2022;191(4):15-22. https://doi.org/10.19206/CE-14....
Borhan HA, Vahidi A. Model predictive control of a power-split hybrid electric vehicle with combined battery and ultra-capacitor energy storage. Proceedings of the 2010 American Control Conference. 2010:5031-5036. https://doi.org/10.1109/ACC.20....
Cao J, Peng J, He H. Modeling and simulation research on power-split hybrid electric vehicle. Energy Proced. 2016;(104):354-359. https://doi.org/10.1016/j.egyp....
Chen S-Y, Hung Y-H, Wu C-H, Huang S-T. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization. Appl Energy. 2015;(160):132-145. https://doi.org/10.1016/j.apen....
Chen Z, Xiong R, Cao J. Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy. 2016;(96):197-208. https://doi.org/10.1016/j.ener....
Chen Z, Xiong R, Wang K, Jiao B. Optimal energy management strategy of a plug-in hybrid electric vehicle based on a particle swarm optimization algorithm. Energies. 2015;(8):3661-3678. https://doi.org/10.3390/en8053....
Delprat S, Lauber J, Guerra TM, Rimaux J. Control of a parallel hybrid powertrain: optimal control. IEEE Trans Veh Technol. 2004;53(3):872-881. https://doi.org/10.1109/tvt.20....
Gao J, Zhu G, Strangas E, Sun F. Equivalent fuel consumption optimal control of a series hybrid electric vehicle. P I Mech Eng D-J Aut. 2009:(23):1003-1018. https://doi.org/10.1243/095440....
Golebiewski W, Lisowski M. Theoretical analysis of electric vehicle energy consumption according to different driving cycles. IOP Conf Ser Mater Sci Eng. 2018;(421):022010. https://doi.org/10.1088/1757-8....
Hwang H-Y, Chen J-S. Optimized fuel economy control of power – split hybrid electric vehicle with particle swarm optimization. Energies. 2020;(13):2278. https://doi.org/10.3390/en1309....
Kleimaier A, Schroder D. An approach for the online optimized control of a hybrid powertrain. 7th International Workshop on Advanced Motion Control. 2002:215-220. https://doi.org/10.1109/AMC.20....
Lin CC, Peng H, Grizzle JW, Kang J-M. Power management strategy for a parallel hybrid electric truck. IEEE T Contr Syst T. 2003;11(6):839-849. https://doi.org/10.1109/TCST.2....
Lin CC, Peng H, Grizzle JW. A stochastic control strategy for hybrid electric vehicles. P Amer Contr Conf. 2004;(5):4710-4715. https://doi.org/10.23919/ACC.2....
Moura SJ, Fathy HK, Callaway DS, Stein JL. A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE T Veh Technol. 2011;(19):545-555. https://doi.org/10.1109/TCST.2....
Musado C, Rizzoni G, Guezennec Y, Staccia B. A ECMS: an adaptive algorithm for hybrid electric vehicle energy management. Eur J Control. 2005;11(4-5):509-524. https://doi.org/10.3166/ejc.11....
Paganelli G, Guezennec Y, Rizzoni G. Optimizing control strategy for hybrid fuel cell vehicle. SAE Technical Paper 2002-01-0102, 2002. https://doi.org/10.4271/2002-0....
Pielecha I, Cieślik W, Fluder K. Analysis of energy management strategies for hybrid electric vehicles in urban driving conditions. Combustion Engines. 2018;173(2):14-18. https://doi.org/10.19206/CE-20....
Prajwowski K, Golebiewski W, Lisowski M, Abramek KF, Galdynski D. Modeling of working machines synergy in the process of the hybrid electric vehicle acceleration. Energies. 2020;(13):5818. https://doi.org/10.3390/en1321....
Prajwowski K, Golebiewski W, Lisowski M, Eliasz J. Road tests of selected electrical parameters of hybrid vehicle accumulation system. IEEE Trans Veh Technol. 2021;70(1):203-211. https://doi.org/10.1109/TVT.20....
Sciarretta A, Back M, Guzzella L. Optimal control of parallel hybrid electric vehicles. IEEE T Contr Syst T. 2004;12(3):352-363. https://doi.org/10.1109/TCST.2....
Shi DH, Wang SH, Pisu P, Chen L, Wang RC, Wang RG. Modeling and optimal energy management of a power split hybrid electric vehicle. Sci China Technol Sc. 2017;(60):713-725. https://doi.org/10.1007/s11431....
Tang X, Chen J, Liu T, Qin Y, Cao D. Distributed deep reinforcement learning- based energy and emission management strategy for hybrid electric vehicles. IEEE T Veh Technol. 2021;70(10):9922-9934. https://doi.org/10.1109/TVT.20....
Wu X, Cao B, Wen J, Bian Y. Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter. 2008 IEEE Vehicle Power. 2008:1-5. https://doi.org/10.1109/VPPC.2....
Yang J, Zhu G. Adaptive recursive prediction of the desired torque of hybrid powertrain. IEEE T Veh Technol. 2015;64(8):3402-3413. https://doi.org/10.1109/tvt.20....
Yu K, Yang J, Yamaguchi D. Model predictive control for hybrid vehicle ecological driving using traffic signal and road slop information. Control Theory Technol. 2015;13(1):17-28. https://doi.org/10.1007/s11768....
Zhu Y, Chen Y, Tian G, Wu H, Chen Q. A four-step method to design an energy management strategy for hybrid vehicles. P Amer Contr Conf. 2004;(1):156-161. https://doi.org/10.23919/ACC.2...
Zhu D, Pritchard E, Dadam S R, Kumar V, Xu Y. Optimization of rule-based energy management strategies for hybrid vehicles using dynamic programming. Combustion Engines. 2021;184(1):3-10. https://doi.org/10.19206/CE-13....
Analysis of speed limit and energy consumption in electric vehicles Jarosław Mamala, Mariusz Graba, Jovan Mitrovic, Krzysztof Prażnowski, Patryk Stasiak Combustion Engines
Performance Analysis of CatBoost Algorithm and XGBoost Algorithm for Prediction of CO2Emission Rating G Sandeep Kumar, R Dhanalakshmi 2023 6th International Conference on Contemporary Computing and Informatics (IC3I)
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.