KEYWORDS
TOPICS
ABSTRACT
In this paper methodology for simulation of the Rotating Detonation Engines in ANSYS Fluent is developed. The overall approach relies on a 2D geometry, global reaction models of the homogeneous kerosene-air mixture, and appropriate boundary and initial conditions. It leads to development and steady propagation of the detonation wave in a periodic channel. The wave structure and basic parameters are analyzed and compared to the data in the literature and an ideal Chapman-Jouguet detonation. The trends of the detonation speed are analyzed for range of equivalence ratios, mixture temperatures and pressures, mesh resolution and combustion models. The software is capable of simulation of complex phenomena occurring in the detonation wave. A cellular structure visible in real detonations can be predicted by CFD, although its scale differs due to simplifications employed. The study shows that this methodology can be used for analysis of propulsion systems operating on detonative combustion. It also indicates its limitations and areas for improvements. ANSYS Fluent flexibility and user-friendly interface combined with this methodology help the user concentrate on R&D instead of coding.
REFERENCES (31)
2.
Dagaut P, Cathonnet M. The ignition, oxidation, and com-bustion of kerosene: a review of experimental and kinetic modelling. Prog Energ Combust. 2006;32(1):48-92. https://doi.org/10.1016/j.pecs....
 
3.
Davidenko DM, Gökalp I, Kudryavtsev AN. Numerical 14dy of the continuous detonation wave rocket engine. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 28 April–1 May 2008, Day-ton. Ohio, AIAA 2008-2680. https://doi.org/10.2514/6.2008....
 
4.
Dziemińska E, Fukuda M, Hayashi AK, Yamada E. Fast flame propagation in hydrogen-oxygen mixture. Combust Sci Technol. 2012;184(10-11):1608-1615. https://doi.org/10.1080/001022....
 
5.
Franzelli B, Riber E, Sanjosé M, Poinsot T. A two-step chemical scheme for kerosene-air premixed flames. Combust Flame. 2010;157:1364-1373. https://doi.org/10.1016/j.comb....
 
6.
Gerasimov GY, Levashov VY. Kinetic models of combustion of kerosene. Journal of Engineering Physics and Ther-mophysics. 2024;97:506-524. https://doi.org/10.1007/s10891....
 
7.
Gerasimov GY, Tunik YV, Kozlov PV Simplified kinetic model of kerosene combustion. Russ J Phys Chem B. 2021;15:637-644. https://doi.org/10.1134/S19907....
 
8.
Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotat-ing detonations. Shock Waves. 2009;19:1-10. https://doi.org/10.1007/s00193....
 
9.
Kawalec M, Perkowski W, Wolanski P. Development of rocket engines with detonation combustion chamber. In: Re-search on detonative propulsion in Poland. Institute of Avia-tion Scientific Publication. 2021;60:163-181.
 
10.
Kawalec M, Perkowski W, Łukasik B Applications of the continuously rotating detonation to combustion engines at the Łukasiewicz – Institute of Aviation. Combustion Engines. 2022;191(4):51-57. https://doi.org/10.19206/CE-14....
 
11.
Kindracki J, Wolański P, Gut Z. Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves. 2011;21:75-84. https://doi.org/10.1007/s00193....
 
12.
Knowlen C, Mundt T, Kurosaka M. Experimental results for 25-mm and 51-mm rotating detonation rocket engine com-bustors. Shock Waves. 2023;33:237-252. https://doi.org/10.1007/s00193....
 
13.
Kohama S, Ito T, Tsuboi N, Ozawa K, Hayashi AK. Two-dimensional detailed numerical simulation of ammo-nia/hydrogen/air detonation: hydrogen concentration effects and transverse detonation wave structure. Shock Waves. 2024;34:139-154. https://doi.org/10.1007/s00193....
 
14.
Kublik D, Kindracki J, Wolański. Evaluation of wall heat loads in the region of detonation propagation of detonative propulsion combustion chambers. Appl Therm Eng. 2019;156:606-618. https://doi.org/10.1016/j.appl....
 
15.
Meyer SJ, Polanka MD, Schauer F, Anthony RJ, Stevens CA, Hoke J, Rein KD. Experimental Characterization of Heat Transfer Coefficients in a Rotating Detonation Engine, 55th AIAA Aerospace Sciences Meeting, 2017, https://doi.org/10.2514/6.2017....
 
16.
Nishimura J Experimental Research on a long-duration operation of a rotating detonation engine. In: Sasoh A, Aoki T, Katayama M (eds). 31st International Symposium on Shock Waves 2 (ISSW 2017). Springer, 2019, https://doi.org/10.1007/978-3-....
 
17.
Perkowski W, Bilar A, Augustyn M, Kawalec M. Air-breathing rotating detonation engine supplied with liquid kerosene: propulsive performance and combustion stability. Shock Waves. 2024;34:181-192. https://doi.org/10.1007/s00193....
 
18.
Reynolds WC. The element potential method for chemical equilibrium analysis: Implementation in the interactive pro-gram STANJAN, version 3. Technical Rept., 1986.
 
19.
Strelkova MI, Kirillov IA, Potapkin BV, Safonov AA, Su-khanov LP, Umanskiy S. Detailed and reduced mechanisms of a jet combustion at high temperatures. Combust Sci Technol. 2008;180(10-11):1788-1802. https://doi.org/10.1080/001022....
 
20.
Tingas E-A (ed.). Hydrogen for future thermal engines, green energy and technology. Springer Nature Switzerland AG 2023. https://doi.org/10.1007/978-3-....
 
21.
Westbrook CK, Dryer FL. Chemical kinetic modelling of hydrocarbon combustion. Prog Energ Combust. 1984;10(1):1-57. https://doi.org/10.1016/0360-1....
 
22.
Wolański P. Detonation engines. Journal of KONES. 2011;18(3):515-521.
 
23.
Wolański P. Detonative propulsion. Proceedings of Com-bustion Institute. 2013;34(1):125-158. https://doi.org/10.1016/j.proc....
 
24.
Wolański P. RDE research and development in Poland. Shock Waves. 2021;31:623-636. https://doi.org/10.1007/s00193....
 
25.
Wolanski P (ed.). Research on detonative propulsion in Poland. Institute of Aviation Scientific Publication. 2021;60.
 
26.
NASA’s Marshall Space Flight Center YouTube official channel. https://30.youtube.com/watch?v....
 
27.
Xie Q, Ji Z, Wen H, Ren Z, Wolański P, Wang B. Review on the rotating detonation engine and it’s typical problems. Transactions on Aerospace Research. 2020;2020(4):107-163. https://doi.org/10.2478/tar-20....
 
28.
Yi TH, Lou J, Turangan CK, Wolanski P. Numerical study of detonation process in rotating detonation engine and its propulsive performance. In: Research on detonative propul-sion in Poland. Institute of Aviation Scientific Publication. 2021;60:79-91.
 
29.
Zeng W, Liang S, Li HX, Ma HA. Chemical kinetic simula-tion of kerosene combustion in an individual flame tube. Journal of Advanced Research. 2014;5(3):357-366. https://doi.org/10.1016/j.jare....
 
30.
Zettervall N, Fureby C, Nilsson EJK. A reduced chemical kinetic reaction mechanism for kerosene-air combustion. Fuel. 2020;269:117446. https://doi.org/10.1016/j.fuel....
 
31.
Zhou J, Song F, Xu S, Yang X, Zheng Y. Investigation of rotating detonation fueled by liquid kerosene. Energies. 2022;15:4483. https://doi.org/10.3390/en1512....
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top