Nanoparticle emissions from gasoline vehicles DI & MPI
 
More details
Hide details
1
Bern University of Applied Sciences (BFH-TI), Switzerland.
 
2
Federal Office for the Environment FOEN, Air Pollution Control and Chemicals Division, Switzerland.
 
 
Publication date: 2017-08-01
 
 
Combustion Engines 2017,170(3), 179-187
 
KEYWORDS
ABSTRACT
The nanoparticles (NP) count concentrations are limited in EU for all Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. For the particle number (PN) of MPI gasoline cars there are still no legal limitations. In the present paper some results of investigations of nanoparticles from five DI and four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle – GPF” were investigated. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 10^12 1/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 10^11 1/km. The modern MPI vehicles also emit a considerable amount of PN, which in some cases can attain the level of Diesel exhaust gas without DPF and can pass over the actual limit value for GDI (6.0 × 10^12 1/km). The GPF-technology offers in this respect further potentials to reduce the PN-emissions of traffic.
REFERENCES (21)
1.
SGRO, L.A. et al. Investigating the origin of nuclei particles in GDI engine exhausts. Combustion and Flame. 2012, 159(4), 1687-1692.
 
2.
BURTSCHER, H. Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Scienc. 2005, 36(7), 896-932.
 
3.
ULRICH, A. WICHSER, A. Analysis of additive metals in fuel and emission aerosols of diesel vehicles with and without particle traps. Analytical and Bioanalytical Chemistry. 2003, 377(1), 71-81.
 
4.
HU, S. et al. Metals emitted from heavy-duty diesel vehicles equipped with advanced PM and NOx emission controls. Atmospheric Environment. 2009, 43(18), 2950-2959.
 
5.
MAYER, A., CZERWINSKI, J.; ULRICH, A.; MOONEY, J.J. Metal-oxide particles in combustion engine exhaust. SAE Technical Paper. 2010, 2010-01-0792.
 
6.
MAYER, A., CZERWINSKI, J., KASPER, M. et al. Metal oxide particle emissions from diesel and petrol engines. SAE Technical Paper. 2012, 2012-01-0841.
 
7.
ULRICH, A. et al. Particle and metal emissions of diesel and gasoline engines are particle filters appropriate measures? Proceedings of the 16th ETH Conference on Combustion Generated Nanoparticles. 2012.
 
8.
BUCHHOLZ, B.A., DIBBLE, R.W., RICH, D., CHENG, A.S. (ed). Quantifying the contribution of lubrication oil carbon to particulate emissions from a diesel engine. SAE Technical Paper. 2003, 2003-01-1987.
 
9.
SONNTAG, D.B., BAILEY, CH.R., FULPER, C.R., BALDAUF, R.W. Contribution of lubricating oil to particulate matter emissions from light-duty gasoline vehicles in Kansas City. Environment Science & Technology. 27.02.2012.
 
10.
HADLER, J., LENSCH-FRANZE, CH., GOHL, M., MINK, T. Emission reduction a solution of lubricant composition, calibration and mechanical development. MTZ. September 2015.
 
11.
YINHUI, W., RONG, Z., YANHONG, Q. et al. The impact of fuel compositions on the particulate emissions of direct injection gasoline engine. Fuel. 2016, 166, 543-552.
 
12.
BACH, C. Emissionsvergleich verschiedener Antriebsarten in aktuellen Personenwagen. Untersuchung der Emissionen von aktuellen Personenwagen mit konventionellen und direkteingespritzten Benzinmotoren, Dieselmotoren mit und ohne Partikelfilter, sowie Erdgasmotoren (Empa Final Report for Novatlantis and Bundesamt für Umwelt BAFU), in Empa Report 2007 (Novatlantis).
 
13.
BIELACZYC, P., SZCZOTKA, A., WOODBURN, J. An overview of particulate matter emissions from modern light duty vehicles. Combustion Engines. 2013, 153(2), 101-108.
 
14.
HAN, T.W., MELOCHE, E., KUBSH, J. et al. Impact of ambient temperature on gaseous and particle emissions from a direct injection gasoline vehicle and its implications on particle filtration. SAE Technical Paper. 2013, 2013-01-0527.
 
15.
MATHIS, U., KAEGI, R., MOHR, M., ZENOBI, R. TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles. Atmospheric Environment. 2004, 38, 4347-4355.
 
16.
LEE, K.O., SEONG, H., SAKAI, S. et al. Detailed morphological properties of nanoparticles from gasoline direct injection engine combustion of ethanol blends. SAE Technical Paper. 2013, 2013-24-0185.
 
17.
KÖNIGSTEIN, A., FRITZSCHE, J., KETTENRING, K. et al. Alternatives to meet future particle emission standards with a boosted SIDI engine. 24th Aachen Colloquium Automobile and Engine Technology, Oct. 2015, 1301.
 
18.
KERN, B., KUNERT, S. The potential of comprehensive emission control for gasoline DI-engines – a comparison of different exhaust system options and an outlook on future requirements. 24th Aachen Colloquium Automobile and Engine Technology, Oct. 2015, 1267.
 
19.
CZERWINSKI, J., COMTE, P., HEEB, N., MAYER, A. Experiences from nanoparticle research on four gasoline cars. SAE Technical Paper. 2015, 2015-01-1079.
 
20.
WINKLHOFER, E., HOPFNER, W., KAPUS, P. Euro VI Partikelgrenzwerte – Entwicklungsmethoden für GDI Motoren. AVL List GmbH, Graz, Österreich, 7. Tagung HDT, Berlin, Dez. 2010.
 
21.
DYCKMANS, J., ARNDT, S., RAATZ, T. et al. Laseroptische Untersuchungen zur Gemischbildung und Verbrennung in Verbindung mit dem Einsatz von Alkoholen als alternativer Krafstoff bei der Benzindirekteinspritzung. Robert Bosch GmbH, Stuttgart. TU Braunschweig, 7. Tagung HDT, Berlin, Dez. 2010.
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top