KEYWORDS
TOPICS
ABSTRACT
The search for substitutes for conventional fuels leads to the use of hydrocarbon-free or synthetic fuels. One of them is hydrogen. The use of hydrogen in combination with a two-stage charge creation system leads to the combustion of lean (λ > 1) or very lean (λ > 3) charges. The simulation tests carried out were aimed at determining the best configuration of the chamber connecting the prechamber with the main combustion chamber. Three variants of the diameter of the holes connecting the chambers were selected (d = 0.5; 1.0 and 1.5 mm) in combination with different fuel doses fed to the prechamber. A passive chamber (qo_PC = 0 mg) and an active chamber (qo_PC = 0.4 and 1.2 mg) were used, while simultaneously sending a dose of fuel to the main chamber (qo_MC = 6 mg). The research was conducted using AVL Fire 2022.1 software using the moving mesh of the LDV engine. As a result of simulation work, the most favorable conditions for carrying out the process were determined, considering the thermodynamic effects of the process and the accepted values of nitrogen oxide concentration. The resulting correlation maps of the sizes of the chamber openings and the fuel doses fed to the prechamber may determine the initial selection of possibilities for controlling hydrogen combustion in the TJI system.
 
REFERENCES (58)
1.
Algayyim SJM, Saleh K, Wandel AP, Fattah IMR, Yusaf T, Alrazen HA. Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: a review. Fuel. 2024;362:130844. https://doi.org/10.1016/j.fuel....
 
2.
Alleman TL, McCormick RL, Yanowitz J. Properties of ethanol fuel blends made with natural gasoline. Energy Fuels. 2015;29(8):5095-5102. https://doi.org/10.1021/acs.en....
 
3.
Aoyagi T, Wakasugi T, Tsuru D, Tashima H. Analysis of effects of pre-chamber orifices on torch flame behaviours in lean-burn gas engines. Combust Engines. 2024;199(4):3-14. https://doi.org/10.19206/CE-18....
 
4.
Barabás I, Todoruţ AI. Key fuel properties of bio-diesel-diesel fuel-ethanol blends. SAE Technical Paper 2009. 2009-01-1810. https://doi.org/10.4271/2009-0....
 
5.
Bozza F, Teodosio L, Krajnović J, Sjerić M, De Bellis V, Malfi E. Extensive validation of a combustion and pollutant emission model of a pre-chamber engine including different pre-chamber geometries. Fuel. 2024;373:132282. https://doi.org/10.1016/j.fuel....
 
6.
Bucherer S, Rothe P, Sobek F, Gottwald T, Kraljevic I, Vacca A et al. Experimental and numerical investigation of spark plug and passive pre-chamber ignition on a single-cylinder engine with hydrogen port fuel injection for lean operations. SAE Technical Paper 2023. 2023-01-1205. https://doi.org/10.4271/2023-0....
 
7.
Bureshaid K, Shimura R, Feng D, Zhao H, Bunce M. Experimental studies of the effect of ethanol auxiliary fueled turbulent jet ignition in an optical engine. SAE Int J Engines. 2019;12(4):387-399. https://doi.org/10.4271/03-12-....
 
8.
Butler MS, Moran CW, Sunderland PB, Axelbaum RL. Limits for hydrogen leaks that can support stable flames. Int J Hydrog Energy. 2009;34(12):5174-5182. https://doi.org/10.1016/j.ijhy....
 
9.
Crabtree GW, Dresselhaus MS. The hydrogen fuel alternative. MRS Bull. 2008;33(4):421-428. https://doi.org/10.1557/mrs200....
 
10.
Cui Z, Tian J, Zhang X, Yin S, Long W, Song H. Experimental study of the effects of pre-chamber geometry on the combustion characteristics of an ammonia/air pre-mixture ignited by a jet flame. Processes. 2022;10(10):2102. https://doi.org/10.3390/pr1010....
 
11.
Demirbas A. Fuel properties of hydrogen, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for transportation. Energy Sources. 2002;24(7):601-610. https://doi.org/10.1080/009083....
 
12.
Duan Y-h, Sun B-g, Li Q, Wu X-s, Hu T-g, Luo Q-h. Combustion characteristics of a turbocharged direct-injection hydrogen engine. Energy Convers Manag. 2023;291:117267. https://doi.org/10.1016/j.enco....
 
13.
Fayaz H, Saidur R, Razali N, Anuar FS, Saleman AR, Islam MR. An overview of hydrogen as a vehicle fuel. Renew Sustain Energy Rev. 2012;16(8):5511-5528. https://doi.org/10.1016/j.rser....
 
14.
Guo X, Li T, Chen R, Huang S, Zhou X, Wang N et al. Effects of the nozzle design parameters on turbulent jet development of active pre-chamber. Energy. 2024;306:132568. https://doi.org/10.1016/j.ener....
 
15.
Hansen A. Ethanol-diesel fuel blends – a review. Bioresour Technol. 2005;96(3):277-285. https://doi.org/10.1016/j.bior....
 
16.
Hu J, Pei Y, An Y, Zhao D, Zhang Z, Sun J et al. Study of active pre-chamber jet flames based on the synergy of airflow with different nozzle swirl angle. Energy. 2023;282:128198. https://doi.org/10.1016/j.ener....
 
17.
Huo J, Zhao T, Lin H, Li J, Zhang W, Huang Z et al. Study on lean combustion of ammonia-hydrogen mixtures in a pre-chamber engine. Fuel. 2024;361:130773. https://doi.org/10.1016/j.fuel....
 
18.
Ingo C, Tuuf J, Björklund-Sänkiaho M. Experimental study of the performance of a SI-engine fueled with hydrogen-natural gas mixtures. Int J Hydrog Energy. 2024;63:1036–1043. https://doi.org/10.1016/j.ijhy....
 
19.
Jamrozik A, Tutak W, Kociszewski A, Sosnowski M. Numerical simulation of two-stage combustion in SI engine with prechamber. Appl Math Model. 2013;37(5):2961-2982. https://doi.org/10.1016/j.apm.....
 
20.
Jeelan Basha KB, Balasubramani S, Sivasankaralingam V. Effect of pre-chamber geometrical parameters and operating conditions on the combustion characteristics of the hydrogen-air mixtures in a pre-chamber spark ignition system. Int J Hydrog Energy. 2023;48(65):25593–25608. https://doi.org/10.1016/j.ijhy....
 
21.
Ju D, Huang Z, Li X, Zhang T, Cai W. Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: effect of excess air ratio and pre-mixed pressure. Appl Energy. 2020;260:114319. https://doi.org/10.1016/j.apen....
 
22.
Khan MI, Yasmin T, Shakoor A. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew Sustain Energy Rev. 2015;51:785-797. https://doi.org/10.1016/j.rser....
 
23.
Kido H, Nakahara M, Hashimoto J. A turbulent burning velocity model taking account of the preferential diffusion effect. In The 4th International Symposium COMODIA; 1998. https://www.jsme.or.jp/esd/lab....
 
24.
Li D, Zhen H, Xingcai L, Wu-gao Z, Jian-guang Y. Physico-chemical properties of ethanol–diesel blend fuel and its effect on performance and emissions of diesel engines. Renew Energy. 2005;30(6):967-976. https://doi.org/10.1016/j.rene....
 
25.
Li J, Wang Y, Xing K, Guo X, Chen K, Huang H. The influence mechanism of pre-combustion chamber orifice structure on natural gas engines: combustion, emissions, and thermofluid analysis. Appl Therm Eng. 2024;236:121654. https://doi.org/10.1016/j.appl....
 
26.
Liu P, Zhong L, Zhou L, Wei H. The ignition characteristics of the pre-chamber turbulent jet ignition of the hydrogen and methane based on different orifices. Int J Hydrog Energy. 2021;46(74):37083-37097. https://doi.org/10.1016/j.ijhy....
 
27.
Liu X, Aljabri H, Panthi N, AlRamadan AS, Cenker E, Alshammari AT et al. Computational study of hydrogen engine combustion strategies: dual-fuel compression ignition with port- and direct-injection, pre-chamber combustion, and spark-ignition. Fuel. 2023;350:128801. https://doi.org/10.1016/j.fuel....
 
28.
Liu X, Aljabri H, Silva M, AlRamadan AS, Ben Houidi M, Cenker E et al. Hydrogen pre-chamber combustion at lean-burn conditions on a heavy-duty diesel engine: a computational study. Fuel. 2023;335:127042. https://doi.org/10.1016/j.fuel....
 
29.
Lu Y, Qian Y, Zhang D, Chen Y, Pei Y. Parameters opti-mization of prechamber jet disturbance combustion system – effect of prechamber volume and fuel injection mass ratios on performance and exhausts in a diesel engine. Fuel. 2024;373:132360. https://doi.org/10.1016/j.fuel....
 
30.
Molnarne M, Schroeder V. Hazardous properties of hydrogen and hydrogen containing fuel gases. Process Saf Environ Prot. 2019;130:1-5. https://doi.org/10.1016/j.psep....
 
31.
Momirlan M, Veziroglu T. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrog Energy. 2005;30(7):795-802. https://doi.org/10.1016/j.ijhy....
 
32.
Musy F, Ortiz R, Ortiz I, Ortiz A. Hydrogen-fuelled internal combustion engines: direct injection versus port-fuel injection. Int J Hydrog Energy. 2024; https://doi.org/10.1016/j.ijhy....
 
33.
Palombi L, Sharma P, Cenker E, Magnotti G. Effects of engine speed on prechamber-assisted combustion. SAE Technical Paper 2023. 2023-24-0020. https://doi.org/10.4271/2023-2....
 
34.
Peters N, Bunce M. Active pre-chamber as a technology for addressing fuel slip and its associated challenges to lambda estimation in hydrogen ICEs. SAE Technical Paper 2023. 2023-32-0041. https://doi.org/2023-32-0041.
 
35.
Pielecha I, Bueschke W, Skowron M, Fiedkiewicz Ł, Szwajca F, Cieślik W et al. Prechamber optimal selection for a two stage turbulent jet ignition type combustion system in CNG-fuelled engine. Combust Engines. 2019;176(1):16-26. https://doi.org/10.19206/CE-20....
 
36.
Pielecha I, Szwajca F, Skobiej K. Experimental investigation on knock characteristics from pre-chamber gas engine fueled by hydrogen. energies. 2024;17(4):937. https://doi.org/10.3390/en1704....
 
37.
Precedence Research. Hydrogen Combustion Engine Market Size, Share, and Trends 2024 to 2034. 2023; https://www.precedenceresearch....
 
38.
Qiang Y, Ji C, Wang S, Xin G, Hong C, Wang Z et al. Study on the effect of variable valve timing and spark timing on the performance of the hydrogen-fueled engine with passive pre-chamber ignition under partial load conditions. Energy Convers Manag. 2024;302:118104. https://doi.org/10.1016/j.enco....
 
39.
Rajasegar R, Niki Y, García-Oliver JM, Li Z, Musculus MPB. Fundamental insights on ignition and combustion of natural gas in an active fueled pre-chamber spark-ignition system. Combust Flame. 2021;232:111561. https://doi.org/10.1016/j.comb....
 
40.
Santos NDSA, Alvarez CEC, Roso VR, Baeta JGC, Valle RM. Combustion analysis of a SI engine with stratified and homogeneous pre-chamber ignition system using ethanol and hydrogen. Appl Therm Eng. 2019;160:113985. https://doi.org/10.1016/j.appl....
 
41.
Santos NDSA, Alvarez CEC, Roso VR, Baeta JGC, Valle RM. Lambda load control in spark ignition engines, a new application of prechamber ignition systems. Energy Convers Manag. 2021;236:114018. https://doi.org/10.1016/j.enco....
 
42.
Saravanan N, Nagarajan G, Sanjay G, Dhanasekaran C, Kalaiselvan KM. Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode. Fuel. 2008;87(17-18):3591-3599. https://doi.org/10.1016/j.fuel....
 
43.
Soltic P, Hilfiker T. Efficiency and raw emission benefits from hydrogen addition to methane in a prechamber–equipped engine. Int J Hydrog Energy. 2020;45(43):23638–23652. https://doi.org/10.1016/j.ijhy....
 
44.
Tang Q, Sampath R, Marquez ME, Sharma P, Hlaing P, Houidi MB et al. Optical diagnostics on the pre-chamber jet and main chamber ignition in the active pre-chamber combustion (PCC). Combust Flame. 2021;228:218-235. https://doi.org/10.1016/j.comb....
 
45.
The European Hydrogen Observatory. The European hydrogen market landscape. 2023. https://observatory.clean-hydr....
 
46.
Tomić R, Sjerić M, Krajnović J, Ugrinić S. Influence of pre-chamber volume, orifice diameter and orifice number on performance of pre-chamber SI engine – an experimental and numerical study. Energies. 2023;16(6):2884. https://doi.org/10.3390/en1606....
 
47.
Torres-Jimenez E, Jerman MS, Gregorc A, Lisec I, Dorado MP, Kegl B. Physical and chemical properties of ethanol–diesel fuel blends. Fuel. 2011;90(2):795-802. https://doi.org/10.1016/j.fuel....
 
48.
Tutak W, Jamrozik A. Modelling of the thermal cycle of a gas engine using AVL FIRE Software. Combust Engines. 2010;141(2):105-113. https://doi.org/10.19206/CE-11....
 
49.
Wang K da, Sun B gang, Luo Q he, Li Q, Wu X, Hu T et al. Performance optimization design of direct injection turbocharged hydrogen internal combustion engine. Appl Energy Combust Sci. 2023;16:100204. https://doi.org/10.1016/j.jaec....
 
50.
Wang Z, Ji C, Wang D, Zhang T, Wang S, Wang H et al. Analysis of the combustion characteristics of ammonia/air ignited by turbulent jet ignition with assisted hydrogen injection in pre-chamber. Fuel. 2024;367:131513. https://doi.org/10.1016/j.fuel....
 
51.
White C, Steeper R, Lutz A. The hydrogen-fueled internal combustion engine: a technical review. Int J Hydrog Energy. 2006;31(10):1292-1305. https://doi.org/10.1016/j.ijhy....
 
52.
Wu H, Wang L, Wang X, Sun B, Zhao Z, Lee C et al. The effect of turbulent jet induced by pre-chamber sparkplug on combustion characteristics of hydrogen-air pre-mixture. Int J Hydrog Energy. 2018;43(16):8116-8126. https://doi.org/10.1016/j.ijhy....
 
53.
Xu G, Kotzagianni M, Kyrtatos P, Wright YM, Boulouchos K. Experimental and numerical investigations of the unscavenged prechamber combustion in a rapid compression and expansion machine under engine-like conditions. Combust Flame. 2019;204:68-84. https://doi.org/10.1016/j.comb....
 
54.
Zeman J, Dempsey A. Numerical investigation of equivalence ratio effects on flex-fuel mixing controlled combustion enabled by prechamber ignition. Appl Therm Eng. 2024;249:123445. https://doi.org/10.1016/j.appl....
 
55.
Zhou L, Liu P, Zhong L, Feng Z, Wei H. Experimental observation of lean flammability limits using turbulent jet ignition with auxiliary hydrogen and methane in pre-chamber. Fuel. 2021;305:121570. https://doi.org/10.1016/j.fuel....
 
56.
Zhou L, Zhong L, Liu Z, Wei H. Toward highly-efficient combustion of ammonia–hydrogen engine: prechamber turbulent jet ignition. Fuel. 2023;352:129009. https://doi.org/10.1016/j.fuel....
 
57.
Zhu J, Liu R, Lin H, Jin Z, Qian Y, Zhou D et al. Computational insights into flame development and emission formation in an ammonia engine with hydrogen-assisted pre-chamber turbulent jet ignition. Energy Convers Manag. 2024;314:118706. https://doi.org/10.1016/j.enco....
 
58.
Ziyaei S, Mazlan SK, Lappas P, Ziyaei S, Mazlan SK, Lappas P. A review of ultra-lean and stratified charged combustion in natural gas spark ignition engines. SAE Technical Paper 2023. 2003-16-0050. https://doi.org/10.4271/03-16-....
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top