This article is a contribution to the ongoing debate on the scenario of the vehicle powertrains development. The directions of the internal combustion engines development in search of the possibility of effective economic and ecological indicators improvement have been indicated. It has been pointed out that this goal can be achieved through the use of nanotechnology in order to exceed the downsizing barriers resulting from the permissible mechanical loads for conventional materials. The article presents the study of the construction and materials used in the piston assembly of the most advanced four-cylinder, compression-ignition diesel engine currently in manufacture. Original concepts of nanotechnology have been proposed to reduce friction losses in major friction components of future engines with extremely high loads. The main idea is to verify the hypothesis that the sub-micron surface texture of the friction components obtained in the process of applying anti-wear outer layers can lead to an effective reduction of friction losses under real engine operating conditions. Computer simulations of the effects of introducing the surface texture in the upper sealing ring on friction loss confirm this hypothesis by showing friction value being reduced by 3-4% relative to the standard ring profile. In the summary, further advanced technologies designed to effectively utilize the unique properties of carbon nanotubes have been described.
REFERENCES(22)
1.
BABERG, A., FREIDHAGER, M., MERGLER, H., SCHMIDT, K. Aspekte der Kolbenmaterialwahl bei Dieselmotoren. MTZ. 2012, 12.
EICHLER F. et al. The New 2.0l 4-Cylinder BiTurbo TDI® Engine from Volkswagen. 23. Aachener Kolloquium Fahrzeug- und Motorentechnik, 23th Aachen Colloquium Automobile and Engine Technology, Aachen, DE, 6.-8. Okt, 2014.
GROPPER, D., WANG, L., HARVEY, T.J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Journal of Engineering Tribology.
KAŁUŻNY, J., MERKISZ, J., GALLAS, D. et al. An innovative system for piston engine combustion with laserinduced ignition of the hydrocarbon fuel consisting carbon nanotubes. Combustion Engines. 2017, 168(1), 3-14.
KAŁUŻNY, J., MERKISZ-GURANOWSKA, A., GIERSIG, M., KEMPA, K. Lubricating performance of carbon nanotubes in internal combustion engines – engine test results for cnt enriched oil. IJAT. 2017.
MERKISZ, J., PIELECHA, J., BIELACZYC, P., WOODBURN, J. Analysis of emission factors in RDE tests as well as in NEDC and WLTC chassis dynamometer tests. SAE Technical Paper. 2016, 2016-01-0980.
MERKISZ, J., PIELECHA, J. Selected experiences in RDE in Polish reality for different combustion engine applications. 4rd International Conference “Real Driving Emissions”, Berlin 25-27.10.2016.
USMAN, A., PARK, C.W. Modeling and simulation of frictional energy loss in mixed lubrication of a textured piston compression ring during warm-up of spark ignition engine. International Journal of Engine Research. 2017, 18(4), 293-307.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.