Simulation research of the feasibility of developing a multi-fuel valved pulsejet engine
More details
Hide details
1
Instytut Transportu/ Institute of Transport, Politechnika Poznańska / Poznan University of Technology, Poland
2
Instytut Chemii i Elektrochemii Technicznej/Institute of Technical Chemistry and Electrochemistry, Politechnika Poznańska / Poznan University of Technology, Poland
3
Instytut Technologii i Inżynierii Chemicznej/Institute of Chemical Technology and Engineering, Politechnika Poznańska / Poznan University of Technology, Poland
Submission date: 2025-02-13
Final revision date: 2025-03-19
Acceptance date: 2025-03-20
Online publication date: 2025-04-10
Corresponding author
Grzegorz M. Szymański
Instytut Transportu/ Institute of Transport, Politechnika Poznańska / Poznan University of Technology, Piotrowo 3, 60-965, Poznań, Poland
KEYWORDS
TOPICS
ABSTRACT
The article provides an overview of the design and operation of pulse jet engines, alongside a historical perspective on their development. It examines a selection of readily available fuels with diverse physicochemical properties, including methane, methanol, ethanol, gasoline, and LPG. A detailed chemical and energetic analysis of the combustion process for each fuel is conducted to determine key kinematic and thermodynamic parameters critical for the design and optimization of pulse jet engines.
Computational methods and numerical tools used for simulating combustion chamber processes are discussed, with a focus on numerical analyses performed in the ANSYS environment. These simulations evaluate the impact of geometric parameters on the specific work of the engine, enabling the identification of optimal design solutions and key areas requiring further research and modifications.
The study concludes by exploring potential design changes necessary for adapting pulse jet engines to operate efficiently with multiple fuel types. This includes considerations related to material selection for resistance to high temperatures and aggressive combustion conditions, as well as solutions for effective fuel distribution.
REFERENCES (29)
1.
Atkins PW. Chemia fizyczna III. Wydawnictwo Naukowe PWN. Warszawa 2022.
2.
Bajerlein M, Karpiuk W, Smolec R. Application of gas dissolved in fuel in the aspect of a hypocycloidal pump design. Energies. 2022;15:9163.
https://doi.org/10.3390/en1523....
3.
Bradley D, Cheng RK, Dunn-Rankin D, Evans RL, Keller J, Levinsky H et al. Lean combustion. Dunn-Rankin D (ed.) Academic Press 2008.
4.
Candel S, Durox D, Ducruix S, Birbaud AL, Noiray N, Schuller T. Flame dynamics and combustion noise: progress and challenges. Int J Aeroacoust. 2009;8(1):1-56.
https://doi.org/10.1260/147547....
5.
Czarnigowski J, Skiba K, Dubieński K. Investigations of the temperature distribution in the exhaust system of an aircraft piston engine. Combustion Engines. 2019;177(2):12-18.
https://doi.org/10.19206/CE-20....
6.
Du B, Zhao Z. Experimental investigation on the effects of injection parameters on the air-assisted diesel spray characteristics. International Journal of Aerospace Engineering. 2022;2022:1-21.
https://doi.org/10.1155/2022/6....
7.
Garnier E, Leplat M, Monnier JC, Delva J. Flow control by pulsed jet in a highly bended s-duct. 6th AIAA Flow Control Conference 2012;2012-3250.
https://doi.org/10.2514/6.2012....
8.
Ghulam MM, Muralidharan SS, Anand V, Prisell E, Gutmark EJ. Operational mechanism of valved-pulsejet engines. Aerosp Sci Technol. 2024;148:109060.
https://doi.org/10.1016/j.ast.....
9.
Haynes WM, Lide DR, Bruno TJ. CRC handbook of chemistry and physics. 95th ed. 2014.
10.
Idzior M, Karpiuk W, Smolec R. Investigation of novel ceramic materials (Al2O3 and SSiC) for high-pressure pumps delivery sections. Combustion Engines. 2024;196(1):153-160.
https://doi.org/10.19206/CE-17....
11.
Johnson RG. Design, characterization, and performance of a valveless pulse detonation engine. Monterey. Thesis and Dissertration. 2000.
http://ndl.handle.net/10945/76....
13.
Lijewski P, Kozak M, Fuć P, Rymaniak Ł, Ziółkowski A. Exhaust emissions generated under actual operating conditions from a hybrid vehicle and an electric one fitted with a range extender. Transp Res D Transp Environ. 2020;78 :102183.
https://doi.org/10.1016/j.trd.....
16.
Moran MJ, Shapiro HN. Fundamentals of engineering thermodynamics. Wiley 2008.
19.
Pielecha I. Numerical investigation of lambda-value prechamber ignition in heavy duty natural gas engine. Combustion Engines. 2020;181(2):31-39.
https://doi.org/10.19206/CE-20....
20.
RAND Corporation. Pulsejet engines for UAVs: flight-proven drone propulsion systems. 2012.
22.
Serridge M, Licht TR. Piezoelectric accelerometers and vibration preamplifiers. Brüel & Kjær 1987.
23.
Warimani M, Azami MH, Ismail AF. Study of feasibility of pulse detonation engine powered by alternative fuels 292. Int J Eng Adv Technol. 2019;8(2S2):291-296. www.ijeat.org.
26.
Wójcicki S. Silniki pulsacyjne strumieniowe i rakietowe. Wydawnictwo Ministerstwa Obrony Narodowej. Warszawa 1962.
27.
Wójcicki S. Spalanie. Wydawnictwa Naukowo-Techniczne. Warszawa 1969.
29.
Zhou L, Wang W. LES of propane-air swirling non-premixed flame using a SOM combustion model. Combustion Engines. 2025;200(1):71-77.
https://doi.org/10.19206/CE-19....