KEYWORDS
TOPICS
ABSTRACT
The article explains the differences between synthetic fuels of first and second generation. The potential of e-fuels to reduce GHG emissions was indicated. The application requirements that synthetic fuels need to meet in order to be used for powering internal combustion engines have been described. The possibility of using synthetic fuels as "drop-in" fuels, in blends with conventional petroleum-derived fuels as well as by themselves was discussed. E-fuels developed and optimized to power compression ignition and spark ignition engines were characterized. The possibilities of synthetic fuels to reduce emissions of regulated and unregulated exhaust components and to improve the work and operational parameters of the engine were also analyzed using the research carried out so far as basis. At the end of the article, forecasts for synthetic fuels development and applications were presented in the form of a SWOT analysis.
REFERENCES (57)
1.
Aakko-Saksa P, Brink A, Happonen M et al. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL) – Final report. 2012. Aalto University publication series: 21/2012. http://urn.fi/URN:ISBN:978-952... (accessed on 22.05.2022).
 
2.
Beidl C, Münz M, Mokros A. Synthetische Kraftstoffe – Anwendung von Oxymethylenether (OME) am Dieselmotor. 814-849. Springer Vieweg, Berlin, Heidelberg 2019. https://doi.org/10.1007/978-3-....
 
3.
Bogatykh I, Goral T, Seidenspinner P et al. Synthetic fuels against climate change and environmental pollution. 41st. International Vienna Motor Symposium. 22-24.04.2020. https://doi.org/10.51202/97831....
 
4.
Boot MD, Tian M, Hensen EJM, Sarathy SM. Impact of fuel molecular structure on auto-ignition behavior – design rules for future high performance gasolines. Prog Energ Combust. 2017;(60):1-25. https://doi.org/10.1016/j.pecs....
 
5.
Bosch. synthetic fuels – the next revolution. 2017. https://www.bosch.com/stories/... (accessed on 07.04.2022).
 
6.
Calendini P-O, Rankovic N, Gaillard P et al. Synthetic fuel: a promising H2 carrier for transport sector. 42nd International Vienna Motor Symposium. 29-30 April 2021. Vienna 2021.
 
7.
Crusius S, Müller M, Stein H et al. Oxymethylen dimethyl ether, (OMEx) as an alternative for diesel fuel and blend compound: Properties additizing and compatibility with fossil and renewable fuels, Proceedings International Colloquium Fuels, TAE. Stuttgart-Ostfildern 25-26.6.2019.
 
8.
Czerwinski J, Comte P, Stepien Z, Oleksiak S. Effects of ethanol blend fuels E10 and E85 on the non-legislated emissions of a flex fuel passenger car. SAE Technical Paper 2016-01-0977. 2016. https://doi.org/10.4271/2016-0....
 
9.
Damyanov L. Diesel-OME-blends. Springer Berlin Heidelberg 2019. https://doi.org/10.1007/978-3-....
 
10.
De Klerk A. Fischer-Tropsch refining, Wiley. Wiesbaden 2011. https://doi.org/10.1002/978352....
 
11.
Erdmann L et al. Roadmap for the substitution of critical raw materials in electric motors and drives. European Commission 2015. https://doi.org/10.13140/RG.2.....
 
12.
Forbes AD, Powell KG. Applicant: BP: Gasoline Composition, 1975, GB1411947.
 
13.
Wagner C, Grill, M, Keskin MT, Bargende M, Cal L, Pitsch H. Potential analysis and virtual development of SI engines operated with synthetic fuel DMC+. SAE Technical Paper 2020-01-0342. 2020. https://doi.org/10.4271/2020-0....
 
14.
Grisstede I, Kunert S, Müller W et al. EU7 legislation – challenges for the exhaust aftertreatment of gasoline engines. 43rd. International Vienna Motor Symposium. 27-29.04.2022. Vienna 2022.
 
15.
Zhang S, Geng P, Han L, Tian H, Guo X, Li B et al. Effects of oxygenates and aromatics in gasoline on vehicle particulate emissions. SAE Technical Paper 2021-01-0542, 2021. https://doi.org/10.4271/2021-0....
 
16.
Härtl M, Seidenspinner P, Wachtmeister G, Jacob E. Synthetic diesel fuel OME1 a pathway out of the soot-NOx trade-off. MTZ Worldwide. 2014;(7/8):48-53. https://doi.org/10.1007/S38313....
 
17.
Härtl M, Stadler A, Blochum S et al. DMC+ as particulate free and potentially sustainable fuel for DI SI engines. 39th International Vienna Motor Symposium 26-27.04.2018. Vienna 2018. https://doi.org/10.1007/978-3-....
 
18.
Hartung S. Powertrains of the future – how we will meet our climate goals through technology neutrality. 42nd International Vienna Motor Symposium 29-30.04.2021. Vienna 2021.
 
19.
Karavalakis G, Short D, Russell R, Hajbabaei M, Asa-Awuku A, Durbin TD. Evaluating the effects of aromatics content in gasoline on gaseous and particulate matter emissions from SI-PFI and SIDI vehicles. Environ Sci Technol. 2015;49(11):7021-7031. https://doi.org/10.1021/es5061....
 
20.
Kastner O, Avolio G, Rösel G. OME – Diesel Blends für niedrigere Well-to-Wheel CO2 Emissionen in Pkw Motoren. Springer Berlin Heidelberg. 2019:928-941. https://doi.org/10.1007/978-3-....
 
21.
Krajinska A, Poliscanova J, Earl T, Gimbert Y, Decock G, Rangaraju S. Magic green fuels. Transport & Environment. 2021. https://www.transportenvironme... (accessed on 07.04.2022).
 
22.
Kratzsch M, Wukisiewitsch W, Sens M et al. The path to CO2-neutral mobility in 2050. 40th International Vienna Motor Symposium. 15-17.05.2019. https://doi.org/10.51202/97831....
 
23.
Kuchling T, Awgustow A, Kureti S. Treibhausgasreduzierte Energieträger – Herstellung und anwendungstechnische Eigenschaften. EEK-Erdgas, Erdöl, Kohle. 2019, 7-8, 304-315.
 
24.
Lensch-Franzen C. Emission potential of operating fluids and powertrain functions. 5. International Motorenkongress 2018. 27-28.2.2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-....
 
25.
Liu H, Wang Z, Wang J, He X, Zheng Y, Tang Q et al. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends. Energy. 2015;(88):793-800. https://doi.org/10.1016/j.ener....
 
26.
Liu H, Wang Z, Li Y, Zheng Y, He T, Wang J. Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers. Appl Energ. 2019;(233-234):599-611. https://doi.org/10.1016/J.APEN....
 
27.
Lumpp B, Rothe D, Pastötter CR, Lämmermann R, Jacob E. Oxy-methylene ethers as diesel fuel additives of the future. MTZ Worldwide. 2011;72(3):35-38. https://doi:10.1365/S38313-011....
 
28.
Maier T, Härtl M, Jacob E, Wachtmeister G. Dimethyl carbonate (DMC) and methyl formate (MeFo): emission characteristics of novel, clean and potentially CO2-neutral fuels including PMP and sub-23 nm nanoparticle-emission characteristics on a spark-ignition DI-engine. Fuel. 2019; (256):115925. https://doi.org/10.1016/J.FUEL....
 
29.
Maus W, Jacob E. Synthetic fuels – OME1: a potentially sustainable diesel fuel. 35th International Vienna Motor Symposium. 8-9.05.2014. Fortschritt-Berichte VDI Reihe 2014;12(777):325-347.
 
30.
Maus W. Zukünftige Kraftstoffe. Energiewende des Transports als ein weltweites Klimaziel. Springer Vieweg Berlin, Heidelberg. 2019. https://doi.org/10.1007/978-3-....
 
31.
Omari A, Heuser B, Pischinger S, Rüdinger C. Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Appl Energ. 2019;(239):1242-1249. https://doi.org/10.1016/j.apen....
 
32.
Pélerin D, Gaukel K, Härtl M, Jacob E, Wachtmeister G. Potentials to simplify the engine system using the alternative diesel fuels oxymethylene ether OME1 and OME3-6 on a heavy-duty engine. Fuel. 2020;(259):116231. https://doi.org/10.1016/j.fuel....
 
33.
Porsche and Siemens Energy. (2020, December 2). Siemens Energy and Porsche, with partners, advance climate-neutral e-fuel development. https://www.porsche.com/uk/abo... (accessed on 07.04.2022).
 
34.
Ramirez A, Sarathy M, Gascon J. CO2 derived e-fuels: research trends, misconceptions, and future directions. Trends in Chemistry. 2020;2(9):785-795. https://doi.org/10.1016/j.trec....
 
35.
Richter G, Zellbeck H. OME as an alternative for passenger car diesel engines. MTZ Worldwide. 2017;78(12):60-67. https://doi.org/10.1007/s38313....
 
36.
Richter G. Oxymethylendimethylether: Ein CO2-neutraler Kraftstoff zur Auflösung des Ruß-NOx-Zielkonflikts. Dissertation. TU Dresden 2018. Verlag Dr. Huth, München, 2019.
 
37.
Sarathy S, Farooq A, Kalghatgi GT. Recent progress in gasoline surrogate fuels. Prog Energ Combust. 2018;(65): 67-108. https://doi.org/10.1016/j.pecs....
 
38.
Scharrer O, Wieske P, Warth M et al. Uncompromisingly fun to drive thanks to synthetic fuel blend. 40th International Vienna Motor Symposium. 15-17.05.2019. Vienna 2019. https://doi.org/10.51202/97831....
 
39.
Schlögl R. Synthetic fuels: a buzzword or a relevant contribution to the turnaround to energy policy? 35th International Wiener Motorensymposium. 8-9.05.2014. Vienna 2014.
 
40.
Schlögl R. CO2 to fuels – chemical perspectives. 37th International Vienna Motor Symposium. 28-29.04.2016. Vienna 2016. https://doi.org/10.51202/97831....
 
41.
Schlögl R. Erneuerbare Energien in der Mobilität: Das Potenzial synthetischer Kraftstoffe auf der Basis von CO2. 39th International Vienna Motor Symposium. 26-27.04. 2018. Vienna 2018. https://doi.org/10.51202/97831....
 
42.
Schlögl R. Methanol as synfuel. 6th MTPCC – Methanol Technology and Policy Commercial Congress. Frankfurt 4.12.2019. https://pure.mpg.de/pubman/fac... (accessed on 16.05.2022).
 
43.
Schlögl R. Liquid fuels as chemical batteries. 7. Internationaler Motoren-Kongress. 16.02.2020. Baden-Baden 2020. http://hdl.handle.net/21.11116....
 
44.
Schmidt P, Weindorf W, Roth W, Batteiger V, Riegel F. Power to liquids: potentials and perspectives for the future supply of renewable aviation fuel. Tech. rep. German Environment Agency (Umwelt Bundesamt). 2016. https://books.google.pl/books/... (accessed on 11.04.2022).
 
45.
Stępień S. Intake valve and combustion chamber deposits formation – the engine and fuel related factors that impacts their growth. Nafta–Gaz. 2014l(4);236-242.
 
46.
Stepien Z, Czerwinski J, Comte P, Oleksiak S. Nanoparticle and non-legislated gaseous emissions from a gasoline direct-injection car with ethanol blend fuels and detergent additives. Energy&Fuels. 2016;30(9):7268-7276. https://doi.org/10.1021/acs.en....
 
47.
Stępień S. The influence of particulate contamination in diesel fuel on the damage to fuel injection systems. Combustion Engines. 2019;177(2):76-82. https://doi.org/10.19206/CE-20....
 
48.
Stępień S. Influence of physicochemical properties of gasoline on the formation of DISI engine fuel injector deposits. Combustion Engines. 2021;184(1):16-24. https://doi.org/10.19206/CE-13....
 
49.
Transport & Environment. Published: April 2018. European Federation for Transport and Environment AISBL. https://www.transportenvironme... (accessed on 10.04. 2022).
 
50.
Teng H, McCandless J. Comparative study of characteristics of diesel-fuel and dimethyl-ether sprays in the engine. SAE Technical Paper 2005-01-1723. 2005. https://doi.org/10.4271/2005-0....
 
51.
Urzędowska W, Stępień Z. Prediction of threats caused by high FAME diesel fuel blend stability for engine injector operation. Fuel Process Technol. 2016;(142):403-410. https://doi.org/10.1016/j.fupr....
 
52.
Wang D, Zhu G, Li Z, Xia C. Polyoxymethylene dimethyl ethers as clean diesel additives: Fuel freezing and prediction. Fuel. 2019, 237, 833-839. https://doi.org/10.1016/j.fuel....
 
53.
Wen I, Xing CY, Yang SC. The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission. Appl Energ. 2010;(87):115-121. http://www.sciencedirect.com/s... (accessed on 11.04.2022).
 
54.
Wilharm T, Jacob E. The way to an OME specification: where do we stand? 6th MTPCC – Methanol Technology and Policy Commercial Congress. Frankfurt 12.2019.
 
55.
Wilharm T, Stein H, Bogatykh I. Roadmap to an OME-Spezification. 7. International Motorenkongress Baden-Baden. 16.2.2020. https://doi.org/10.1007/978-3-....
 
56.
Willems W, Weber J, Herrmann OE et al. DME/OME1 – Sustainable fuels for compression ignition engines for passenger car and heavy-duty applications. 40th International Vienna Motor Symposium. 15-17.05.2019.
 
57.
Worldwide Fuel Charter. 6th Edition, Gasoline and Diesel Fuel. ACEA. 28.10.2019. https://www.acea.be/uploads/pu... (accessed on 07.04.2022).
 
 
CITATIONS (9):
1.
Waste-to-energy technologies as the future of internal combustion engines
Mohamad Hamid, Mateusz Wesołowski
Combustion Engines
 
2.
Improving the performance of diesel engines fueled with water-fuel emulsion
Dmytro Samoilenko, Anatolii Savchenko, Serhii Kravchenko
Combustion Engines
 
3.
Combustion stability for early and late direct hydrogen injection in a dual fuel diesel engine
Ksenia Siadkowska, Grzegorz Barański
Combustion Engines
 
4.
Techno-Environmental Feasibility of Synthetic Fuels in the Private Vehicle Fleet. Application to the Spanish Automobile Fleet in 2035
Lázaro Cremades, Luis Oller
 
5.
Evaluation of a pressure sensing glow plug in terms of its application possibility to control the combustion process of a hydrogen-powered spark-ignition engine
Marcin Noga, Tomasz Moskal
Combustion Engines
 
6.
Hydrotreated vegetable oil fuel within the Fit for 55 package
Mieczysław Sikora, Piotr Orliński
Combustion Engines
 
7.
Evaluation of selected combustion parameters in a compression-ignition engine powered by hydrogenated vegetable oil (HVO)
Piotr Orliński, Mieczysław Sikora, Mateusz Bednarski, Piotr Paweł Laskowski, Maciej Gis, Piotr Krzysztof Wiśniowski
Combustion Engines
 
8.
Techno-environmental feasibility of synthetic fuels in ground transportation. Application to the Spanish automobile fleet in 2035
Lázaro V. Cremades, Luis Oller
Energy Reports
 
9.
The Influence of Powering a Compression Ignition Engine with HVO Fuel on the Specific Emissions of Selected Toxic Exhaust Components
Piotr Orliński, Mieczysław Sikora, Mateusz Bednarski, Maciej Gis
Applied Sciences
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top