The use of glycerine as motor fuel
 
More details
Hide details
1
Faculty of Mechanical Engineering, Cracow University of Technology.
 
 
Publication date: 2019-07-01
 
 
Combustion Engines 2019,178(3), 166-172
 
KEYWORDS
ABSTRACT
Glycerine as waste from production accounts for about 10% of the obtained amount of biodiesel. It is a very attractive substance for the industry, however, currently the industry is not able to absorb such a large amount of glycerine produced during the production of fuel. Therefore, one should look for other ways of disposing of glycerol with simultaneous benefit in the form of energy yield or useful products / semi-finished products. The development of glycerine is necessary due to the continuous development of the biofuel market. In the near future, surplus glycerine may pose serious problems in the growth of biodiesel production. The publication presents the results of scientific research on the use of liquid technical glycerine and its processing products in the gasification process, as engine fuel.
REFERENCES (39)
1.
BOROWIECKI, T., RYCZKOWSKI, J. Procesy i Katalizatory pozyskiwania gazu syntezowego. Uniwersytet Chemii w Lublinie, Instytut Nawozów Sztucznych w Puławach.
 
2.
PAŃCZYK, M., BOROWIECKI, T. Otrzymywanie i zastosowanie gazu syntezowego. Zakład technologii chemicznej, Wydział Chemii Uniwersytetu w Lublinie.
 
3.
CHMIELNIAK, T., STELMACH, S. Współczesne technologie zgazowania węgla. Problemy Ekologii. 2009, 2.
 
4.
PIETRZKIEWICZ, L. I co z węglem? Chemia przemysłowa. 2011, 1.
 
5.
KIJEŃSKI, J., KRAWCZYK, Z. Perspektywy rynku gliceryny. Przemysł chemiczny. 2007, 4.
 
6.
RYCHLIK, A., KIBALCZYC, Ł. Application of glycerine for powering piston diesel engines of large power. Combustion Engines. 2015, 162.
 
7.
STELMASIAK, Z., PIETRAS, D. Utilization of waste glycerine to fuelling of spark ignition engines. Materials Science and Engineering. 2016, 148.
 
8.
CHMIELNIAK, T., POPOWICZ, J. Fluidalne zgazowanie węgla przy użyciu CO2 dla produkcji gazu syntezowego. Chemik. 2013, 67.
 
9.
DĄBROWSKI, W., BEDNARSKI, W. Ekologiczne aspekty produkcji oraz stosowania biodiesla. Nauki inżynierskie i technologie. 2013, 10.
 
10.
ZASTĘPOWSKI, M., KASZKOWIAK, J., BOROWSKI, S. et al. Wpływ zastosowania paliwa z dodatkiem alkoholu na efektywność pracy silników spalinowych. Logistyka. 2012, 6.
 
11.
IGLIŃSKI, B., KUJAWSKI, W., BUCZKOWSKI, R., IGLIŃSKA, A. Ekologiczne efekty stosowania biopaliw. Wydział Ochrony Środowiska, Uniwersytet Toruński.
 
12.
KUBALA, A. Efekty termiczne przy odwadnianiu etanolu w cyklicznym procesie adsorpcyjno-desorbcyjnym zmiennociśnieniowym. PK Wydział Inżynierii i Technologii Chemicznej.
 
13.
PICKETT, D.K. Design and operation of the synthesis gas generator system for reformed propane and glycerine combustion. University of Kansas. 2013.
 
14.
PALARSKI, J. Pozyskiwanie metodami niekonwencjonalnymi energii z pozabilansowych pokładów węgla z uwzględnieniem ograniczenia emisji CO2. Górnictwo i Geologia. 2010, 5(1).
 
15.
STRUGAŁA, A., CZERSKI, G. Badania nad technologiami zgazowania węgla w Polsce. Przemysł Chemiczny. 2012.
 
16.
BEDNARCZYK, J. Rozwój technologii podziemnego zgazowania węgla i perspektywy jej przemysłowego wdrożenia. Górnictwo i Geoinżynieria. 2007.
 
17.
SARBAK, Z. Gaz syntezowy i jego przemiany. LAB 2018, 6.
 
18.
SILVEY, L.G. Hydrogen and syngas production from derived crude glycerol. Univesity of Kansas. 2011.
 
19.
JACH, A., CIEŚLAK, I., TEODORCZYK, A. Investigation of glicerol doping on ignition delay times and laminar burning velocites of gasoline and diesel fuel. Combustion Engines. 2017, 169.
 
20.
ZHANG, B., TANG, X., LI, Y. et al. Hydrogen production from steam reforming of ethanol and glycerol over ceria supported metal catalysts. International Journal of Hydrogen Energy. 2007, 32, 2367-2373.
 
21.
BUFFONI, I.N., POMPEO, F., SANTORI, G.F., NICHIO, N.N. Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catalysis communications. 2009, 10, 1656-1660.
 
22.
ADHIKARI, S., FERNANDO, S.D., HARYANTO, A. Hydrogen production from glicerin by steam reforming over nickel catalysts. Renewable Energy. 2008, 33, 1097-1100.
 
23.
THYSSEN, V.V., MAIA, T.A., ASSAF, E.M. Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming. Fuel. 2013, 105, 358-363.
 
24.
IRIONDO, A., BARRIO, V.L., CAMBRA, J.F. et al. Glycerol steam reforming over Ni catalysts supported on ceria and ceria promoted alumina. International Journal of Hydrogen Energy. 2010, 35, 11622-11633.
 
25.
POMPEO, F., SANTORI, G.F., NICHIO, N.N. Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts. Catalysis Today. 2011, 172, 183-188.
 
26.
POMPEO, F., SANTORI, G.F., NICHIO, N.N. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. International Journal of Hydrogen Energy. 2010, 35, 8912-8920.
 
27.
WANG, H., WANG, X., LI, M. et al. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. International Journal of Hydrogen Energy. 2009, 34, 5683-5690.
 
28.
WANG, W. Thermodynamic analysis of glycerol partial oxidation for hydrogen production. Fuel Processing Technology. 2010, 91, 1401-1408.
 
29.
YANG, G., YU, H., PENG, F. et al. . Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol. Renewable Energy. 2011, 36, 2120-2127.
 
30.
BYRD, A.J., PANT, K.K., GUPTA, R.B. Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel. 2008, 87, 2956-2960.
 
31.
CHAKINALA, A.G., BRILMAN, D.W.F, VAN SWAAIJ, W.P.M., KERSTEN, S.R.A. Catalytic and non catalytic supercritical water gasification of microalgae and glycerol. Industral & Engineering Chemistry Research. 2009, 49, 1113-1122.
 
32.
GUO, S., GUO, L., CAO, C. et al. Hydrogen production from glycerol by supercritical water gasification in a continuos flow tubular reactor. International Journal of Hydrogen Energy. 2012, 37, 5559-5568.
 
33.
VAN BENNEKON, J.G., VENDERBOSCH, R.H., ASSINK, D., HEERES, H.J. Reforming of methanol and glycerol in supercritical water. The Journal of Supercritical Fluids. 2011, 58, 99-113.
 
34.
VOLL, F.A.P., ROSSI, C.C.R.S., SILVA, C. et al. Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. International Journal of Hydrogen Energy. 2009, 34, 9737-9744.
 
35.
WANG, X., LI, M., WANG, M. et al. Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel. 2009, 88, 2148-2153.
 
36.
FERNÁNDEZ, Y., ARENNILAS, A., BERMÚDEZ, J.M., MENÉNDEZ, J.A. Comparative study of conventional and microwave assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. Journal of Analytical and Applied Pyrolysis. 2010, 88, 155-159.
 
37.
KALE, G.R., KULKARNI, B.D. Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Processing Technology. 2010, 91, 520-530.
 
38.
VALLIYAPPAN, T., BAKHSHI, N.N., DALAI, A.K. Pyrolysis of glycerol for the production of hydrogen or syngas. Bioresource Technology. 2008, 99, 4476-4483.
 
39.
Grab-Rogaliński K., Szwaja S. The possibililty of use a waste product of biofules production – glycerol as a fuel to the compression ignition engine. Journal of KONES. 2016, 23(3).
 
 
CITATIONS (3):
1.
Effective Combustion of Glycerol in a Compression Ignition Engine Equipped with Double Direct Fuel Injection
Michal Gruca, Michal Pyrc, Magdalena Szwaja, Stanislaw Szwaja
Energies
 
2.
Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend
Stanislaw Szwaja, Michal Gruca, Michal Pyrc, Romualdas Juknelevičius
Energies
 
3.
Investigation on ethanol-glycerol blend combustion in the internal combustion sparkignited engine. Engine performance and exhaust emissions
Stanislaw Szwaja, Michal Gruca, Michal Pyrc
Fuel Processing Technology
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top