KEYWORDS
TOPICS
ABSTRACT
Assessing vehicle emissions is crucial for understanding their environmental impact and developing effective emission reduction strategies. This article discusses modern research tools that combine traditional laboratory measurements on chassis dynamometers with advanced theoretical models. Probabilistic methods, including stochastic processes based on Markov and semi-Markov chains, are important tools for modelling driving cycles, considering the variability of road conditions and driver behaviour. The article also presents mathematical approaches to emission data analysis, considering both the states of the technical system and the transitions between them, which allows for precise modelling of real vehicle operating conditions. Ultimately, the synergy of experimental measurements with computational modelling offers a more complete and accurate tool for assessing pollutant emissions, which is crucial in global efforts to improve air quality.
REFERENCES (26)
1.
Bednarek M, Ziółkowski A, Jagielski A, Siedlecki M. The analysis of the operating conditions of a heavy-duty engine of a vehicle designated for timber transport in terms of compliance with the RDE procedures. Combustion Engines. 2024;199(4):140-50. https://doi.org/10.19206/CE-19....
 
2.
Bishop J, Molden N, Boies A. Using portable emissions measurement systems (PEMS) to derive more accurate estimates of fuel use and nitrogen oxides emissions from modern Euro 6 passenger cars under real-world driving conditions. Appl Energ. 2019;242:942-973. https://doi.org/10.1016/j.apen....
 
3.
Borucka A, Wiśniowski P, Mazurkiewicz D, Świderski A. Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic. Measurement. 2021;174:108998. https://doi.org/10.1016/j.meas....
 
4.
Chłopek Z, Laskowski P. Pollutant emission characteristics determined using the Monte Carlo method. Eksploat Niezawodn. 2009;2:42-51.
 
5.
INFRAS AG: HBEFA Handbook emission factors for road transport 4.2, INFRAS, Bern 2022.
 
6.
Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploat Niezawodn. 2023;25(4). https://doi.org/10.17531/ein/1....
 
7.
Kozłowski E, Borucka A, Oleszczuk P, Leszczyński N. Evaluation of readiness of the technical system using the semi-Markov model with selected sojourn time distributions. Eksploat Niezawodn. 2024;26(4). https://doi.org/10.17531/ein/1....
 
8.
Laskowski P. Wyznaczanie charakterystyk emisji zanieczyszczeń w przypadkowych stanach pracy samochodowych silników spalinowych (in Polish). Doctoral Thesis. Warsaw University of Technology. Warsaw 2015.
 
9.
Laskowski P, Zasina D, Zimakowska-Laskowska M, Zawadzki J, Warchałowski A. Vehicle hydrocarbons’ emission characteristics determined using the Monte Carlo method. Environ Model Assess. 2019;24:311-318. https://doi.org/10.1007/s10666....
 
10.
Majerek D, Rymarczyk T, Wójcik D, Kozłowski E, Rzemieniak M, Gudowski J et al. Machine learning and deterministic approach to the reflective ultrasound tomography. Energies. 2021;14:7549. https://doi.org/10.3390/en1422....
 
11.
Matijošius J, Rimkus A, Gruodis A. Validation challenges in data for different diesel engine performance regimes utilising HVO fuel: a study on the application of artificial neural networks for emissions prediction. Machines. 2024;12(4):279. https://doi.org/10.3390/machin....
 
12.
Matijošius J, Rimkus A, Gruodis A. Validation of ecology and energy parameters of diesel exhausts using different fuel mixtures, consisting of hydrogenated vegetable oil and diesel fuels, presented at real market: approaches using artificial neural network for large-scale predictions. Machines. 2024;12(6):353. https://doi.org/10.3390/machin....
 
13.
Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc. 1949;44(247):335-341. https://doi.org/10.1080/016214....
 
14.
Nazarko L, Melnikas B. Operationalising responsible research and innovation – tools for enterprises. Engineering Management in Production and Services. 2019;11(3):21-28. https://doi.org/10.2478/emj-20....
 
15.
Ntziachristos L, Gkatzoflias D, Kouridis C, Samaras Z. COPERT: a European road transport emission inventory model. In: Athanasiadis Rizzoli AE, Mitkas PA, Gómez JM (eds). Springer: Berlin/Heidelberg, Germany, 2009;491-504. https://doi.org/10.1007/978-3-....
 
16.
Orynycz O, Świć A. The effects of material’s transport on various steps of production system on energetic efficiency of biodiesel production. Sustainability. 2018;10(8):2736. https://doi.org/10.3390/su1008....
 
17.
Rahman SMA, Fattah IMR, Ong HC, Ashik FR, Hassan MM, Murshed MT et al. State-of-the-art of establishing test procedures for real driving gaseous emissions from light- and heavy-duty vehicles. Energies. 2021;14(14):4195. https://doi.org/10.3390/en1414....
 
18.
Rosero F, Fonseca N, López J, Casanova J. Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions. Appl Energ. 2020;261:114442. https://doi.org/10.1016/j.apen....
 
19.
Rybak G, Kozłowski E, Król K, Rymarczyk T, Sulimierska A, Dmowski A et al. Algorithms for optimising energy consumption for fermentation processes in biogas production. Energies. 2023;16(24):7972. https://doi.org/10.3390/en1624....
 
20.
Rymarczyk T, Król K, Kozłowski E, Wołowiec T, Cholewa-Wiktor M, Bednarczuk P. Application of electrical tomography imaging using machine learning methods for the monitoring of flood embankments leaks. Energies. 2021;14:8081. https://doi.org/10.3390/en1423....
 
21.
Tucki K, Orynycz OA, Mruk R, Kulesza E, Ruchała P, Wąsowicz G. Analytical, computer and laboratory modelling of the effect of the fuel used in the spark ignition engine of the selected vehicle on the operating parameters and exhaust gas composition. Adv Sci Tech. 2024;18(8):96-112. https://doi.org/10.12913/22998....
 
22.
Van Mierlo J, Maggetto G, Van de Burgwal E, Gense R. Driving style and traffic measures-influence on vehicle emissions and fuel consumption. P I Mech Eng D-J Aut. 2004;218(1):43-50. https://doi.org/10.1243/095440....
 
23.
Varella R, Duarte G, Baptista P, Sousa L, Villafuerte PM. Comparison of data analysis methods for European real driving emissions regulation. SAE Technical Paper 2017-01-0997. 2017. https://doi.org/10.4271/2017-0....
 
24.
Yang Z, Deng B, Deng M, Huang S. An overview of chassis dynamometer in the testing of vehicle emission. MATEC Web Conf. 2018;175:02015. https://doi.org/10.1051/matecc....
 
25.
Zimakowska-Laskowska M, Laskowski P, Wojs MK, Orliński P. Prediction of pollutant emissions in various cases in road transport. Appl Sci. 2022;12(23):11975. https://doi.org/10.3390/app122....
 
26.
Žvirblis T, Hunicz J, Matijošius J, Rimkus A, Kilikevičius A, Gęca M. Improving diesel engine reliability using an optimal prognostic model to predict diesel engine emissions and performance using pure diesel and hydrogenated vegetable oil. Eksploat Niezawodn. 2023;25(4):1-19. https://doi.org/10.17531/ein/1....
 
eISSN:2658-1442
ISSN:2300-9896
Journals System - logo
Scroll to top